
Computational Statistics and Data Analysis 52 (2008) 4487–4501
www.elsevier.com/locate/csda

Assessing influence in Gaussian long-memory models

Wilfredo Palmaa, Pascal Bondonb,∗, José Tapiac

a Pontificia Universidad Católica de Chile, Chile
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Abstract

A statistical methodology for detecting influential observations in long-memory models is proposed. The identification of these
influential points is carried out by case-deletion techniques. In particular, a Kullback–Leibler divergence is considered to measure
the effect of a subset of observations on predictors and smoothers. These techniques are illustrated with an analysis of the River Nile
data where the proposed methods are compared to other well-known approaches such as the Cook and the Mahalanobis distances.
c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Influence assessment has been widely discussed in the linear model setting; see, for example, Belsley et al. (1980),
Thomas and Cook (1990) and Lawrance (1995). On the other hand, there has been an increasing interest in influence
diagnostics and outlier identification in the time series context; see, for instance, Bruce and Martin (1989), Peña
(1991), Lefrançois (1991), Tsay et al. (2000), Cavanaugh and Oleson (2001), Choy (2001), and Cai and Davies
(2003), among others. Furthermore, Kohn and Ansley (1987), Harrison and West (1991), Cavanaugh and Johnson
(1999) and Proietti (2003) have investigated influence measures in state-space models. In particular, Kohn and Ansley
(1987) extend the concept of leverage to the state-space framework and propose definitions for studentized and deleted
residuals, while Harrison and West (1991) introduce an influence diagnostic in a Bayesian framework. Furthermore,
following the work of Johnson and Geisser (1983), Cavanaugh and Johnson (1999) introduce a Kullback–Leibler-type
influence measure on the smoothers for finite state-space models using fixed-interval smoothing and the expectation-
maximization algorithm for parameter estimation.

Long-memory processes have been widely used to model long-range dependent observations in several disciplines;
see, for example, Doukhan et al. (2003) and Palma (2007) for examples from hydrology to economics. For short-
memory models, the influence of an observation can be expected to be only local. However, in long-memory models,
the influence of a single or a group of observations might be profound and far-reaching. Consequently, there is
particular interest in examining influential observations in long-memory models. There are several difficulties in
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implementing diagnostic measures in the analysis of long-range dependent data. Indeed, as pointed out by Beran
(1994) and Doornik and Ooms (2003), calculation of estimates or predictors is highly computationally demanding.
This is particularly cumbersome when implementing case-deletion techniques since the calculation of estimates or
predictors must be carried out many times. A closely related problem is the need for appropriate methods for dealing
with missing data. In this work, we solve these problems by developing efficient state-space techniques which have
the additional advantage of allowing the easy handling of missing values.

The main contributions of this paper are the proposal and implementation of influence measures for long-memory
processes. These influence measures assess the effect of one or several observations on the forecasts and the smoothers
from state-space systems representing long-memory models. In contrast with other measures like the Mahalanobis
distance or the Cook’s distance, the Kullback–Leibler influence measures are based on different inferential objectives,
that is, the recovery of the smoothed representation of the series and the forecasts of future values. Thus, the diagnostic
techniques discussed are complementary, since they focus on distinct aspects of the analysis. The proposed measures
are implemented by using Kalman filter equations for prediction, filtering and fixed point smoothing along with
Newton-Raphson optimization for parameter estimation. The performance of the proposed influence measures is
illustrated by means of a real-life example. S-plus and Fortran codes for carrying out the computations are available
from the authors upon request.

The paper is structured as follows. Kullback–Leibler measures of the influence of a subset of observations on
predictors and state-space smoothers are discussed in Sections 1.1 and 1.2. Since all state-space representations
of long-range dependent processes are infinite dimensional and good finite approximations require a large state
vector, we address the problem of reducing the dimensionality in Section 1.3. In Section 2, we apply the general
methodology discussed in Section 1 for assessing influence on state-space representations of autoregressive fractional
integrated moving average (ARFIMA) models which are an important class of long-memory processes. In Section 3,
the detection techniques are illustrated by means of an application to the well-known River Nile data. Conclusions are
presented in Section 4, and technical results are summarized in the Appendix.

1.1. Influence of cases on time-series predictors

Let (Yt )t≥1 be a discrete-time zero-mean Gaussian stationary time series, Y = (Y1, . . . , Yn) where n ≥ 1,
and let Y K represent Y with cases indexed by K = {t1, t2, . . . , tk} omitted (treated as missing values) where
1 ≤ t1 < t2 < · · · < tk ≤ n. Let θ be a parameter vector that uniquely determines the time-series model (Yt )t≥1, and
assume that maximum likelihood estimators (MLE) of θ exist, θ̂ and θ̂K based on Y and Y K , respectively.

We want to assess the influence of the missing data (Yt1 , . . . , Ytn ) on the prediction of Yn+h for h = 1, . . . , H
where H ≥ 1 is a given forecast horizon. For this, we are interested in f (yn+h |y; θ) and f (yn+h |yK

; θ) which are the
conditional densities of Yn+h given Y = y and Y K

= yK , respectively. Even though considering the joint densities
f (yn+1, . . . , yn+H |y; θ) and f (yn+1, . . . , yn+H |yK

; θ) could be more desirable, analysing the marginal densities
f (yn+h |y; θ) and f (yn+h |yK

; θ) for h = 1, . . . , H is computationally more convenient. This aspect is crucial in
analysing very long series as it is usually the case when fitting and predicting strongly-dependent processes. The
impact of cases in K on the prediction of Yn+h might be judged by measuring the discrepancy between f (yn+h |y; θ)

and f (yn+h |yK
; θ). Since these densities depend on the unknown parameter θ , they are calculated in practice by

replacing θ by θ̂ in f (yn+h |y; θ), and θ by θ̂K in f (yn+h |yK
; θ). We use the Kullback–Leibler divergence to measure

this disparity; see, for example, Kullback (1997, page 5), Johnson and Geisser (1983), and Cavanaugh and Johnson
(1999). It is defined by

Ih =

∫
R

log
f (yn+h |y; θ̂ )

f (yn+h |yK ; θ̂K )
f (yn+h |y; θ̂ )dyn+h .

The best mean-squared predictors of Yn+h based on Y and Y K are

Y h
n = E[Yn+h |Y ], Y h,K

n = E[Yn+h |Y K
],

and the prediction error variances are

Σ h
n = E[(Yn+h − Y h

n )
2
], Σ h,K

n = E[(Yn+h − Y h,K
n )2].
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These quantities depend on the unknown parameter θ , and we denote by Y h
n (θ̂), Σ

h
n (θ̂), Y h,K

n (θ̂K ) and Σ h,K
n (θ̂K ) the

corresponding quantities when θ is replaced by its estimate θ̂ or θ̂K . A standard derivation of the Kullback–Leibler
information for Gaussian distributions gives

Ih =
1
2

{
Σ h

n (θ̂)

Σ h,K
n (θ̂K )

− log
Σ h

n (θ̂)

Σ h,K
n (θ̂K )

+
(Y h

n (θ̂)− Y h,K
n (θ̂K ))2

Σ h,K
n (θ̂K )

− 1

}
,

and this expression measures the influence of observations indexed by K on the predictor and the prediction error
variance simultaneously. In order to measure the influence on the set of predictors Y h

n for h = 1, . . . , H , we propose
the global divergence measure

D =

H∑
h=1

Ih . (1)

1.2. Influence of cases on the smoothers from state-space models

In what follows, we assume that the time series (Yt )t≥1 is generated by a Gaussian linear state-space model.
Following Cavanaugh and Johnson (1999), we focus on the state smoothers which are the best mean-squared linear
estimates of the state vectors given the observations. A fairly general form of a linear state-space model is

X t+1 = F X t + Vt ,

Yt = G X t + Wt ,

where (X t )t≥1 is a sequence of m-dimensional Gaussian states with X t = (X t (1), . . . , X t (m))′, F is a matrix, G is a

vector, and Ut =

[
Vt
Wt

]
is a zero-mean Gaussian multivariate process such that (X1,Ut )t≥1 is an independent sequence

and E[UtU ′
t ] =

[
Q S
S′ R

]
. The matrices F,G, Q, S, R depend on the parameter θ of the time series model. For any

fixed t , 1 ≤ t ≤ n, we define the best mean-squared linear estimates

X t |n = E[X t |Y ], X K
t |n = E[X t |Y

K
],

with error covariance matrices

Ωt |n = E[(X t − X t |n)(X t − X t |n)
′
], Ω K

t |n = E[(X t − X K
t |n)(X t − X K

t |n)
′
].

The conditional densities which determine X t |n and X K
t |n are respectively f (xt |y; θ) and f (xt |yK

; θ) where xt =

(xt (1), . . . , xt (m)). Thus, the influence of cases indexed by K on the smoother X t |n might be judged by measuring
the disparity between f (xt |y; θ̂ ) and f (xt |yK

; θ̂K ). Using the directed Kullback–Leibler divergence

Jt =

∫
Rm

log
f (xt |y; θ̂ )

f (xt |yK ; θ̂K )
f (xt |y; θ̂ )dxt ,

we obtain that

Jt =
1
2

{
tr
[
Ωt |n(θ̂)Ω K

t |n(θ̂
K )−1

]
− log

det(Ωt |n(θ̂))

det(Ω K
t |n(θ̂

K ))

+ (X t |n(θ̂)− X K
t |n(θ̂

K ))′Ω K
t |n(θ̂

K )−1(X t |n(θ̂)− X K
t |n(θ̂

K ))− m

}
, (2)

where X t |n(θ̂) and Ωt |n(θ̂) are the estimates of X t and the corresponding error-covariance matrix based on the
complete data Y through θ̂ , while X K

t |n(θ̂
K ) and Ω K

t |n(θ̂
K ) denote the same quantities when the estimation of X t

is based on Y K through θ̂K .
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1.3. Reducing dimensionality

The evaluation of Jt in (2) requires the calculation of the inverse matrix Ω K
t |n(θ̂

K )−1 which is usually a very
demanding task. For example, assume that n = 1000, m = 100 and K = {t1} (we measure the influence of a
single case). For each t and t1, we have to invert a matrix of order 100 × 100. This task must be done 106 times to
measure the effect on all the smoothers X t |n of all observations Yt1 considered individually. A simpler problem from
a computational point of view, is to assess the influence of cases indexed by K on a linear combination c′ X t |n instead
of X t |n , for some conveniently chosen vector c = (c1, . . . , cm)

′. In this case, the Kullback–Leibler divergence is

J c
t =

∫
R

log
f c(xt |y; θ̂ )

f c(xt |yK ; θ̂K )
f c(xt |y; θ̂ )dxt ,

where f c(xt |y; θ) and f c(xt |yK
; θ) are the conditional density of c′ X t given Y = y and Y K

= yK , respectively. For
the Gaussian process (Yt )t≥1, J c

t takes the form

J c
t =

1
2

{
c′Ωt |n(θ̂)c

c′Ω K
t |n(θ̂

K )c
− log

c′Ωt |n(θ̂)c

c′Ω K
t |n(θ̂

K )c
+
(c′ X t |n(θ̂)− c′ X K

t |n(θ̂
K ))2

c′Ω K
t |n(θ̂

K )c
− 1

}
.

Note that this expression for J c
t resembles (2), but it avoids the calculation of the inverse matrix Ω K

t |n(θ̂
K )−1. There

are many possible choices for c. For instance in Section 2, we take c = (1, 0, . . . , 0)′ in the context of the state-space
representation (7) and (8) and we explain how to calculate c′ X t |n and c′ X K

t |n . Another alternative is to choose c as
the first principal component ct of the estimation error X t − X t |n . Thus, c′

t (X t − X t |n) is the linear combination
with maximal variance subject to c′

t ct = 1, and therefore ct is an eigenvector associated to the largest eigenvalue
λt of Ωt |n (Shumway and Stoffer, 2000, page 466). Nevertheless, observe that in this case c depends on both t and
θ̂ , and therefore, may not be an attractive choice from a computational point of view. Many alternative methods to
reduce dimensionality may be found in the literature, see for instance the special issue on statistical learning methods
including dimensionality reduction edited by Bock and Vichi (2007).

In order to measure the global effect of the cases in K on the set of smoothed estimates X t |n or c′ X t |n for
t = 1, . . . , n, we define the divergence measure

J =

n∑
t=1

J c
t . (3)

Our interest is to apply the influence measures D and J for long-memory ARFIMA models. To this end, a state-
space representation of an ARFIMA process and calculations of the divergence measures D and J using outputs from
Kalman recursions are presented in the next section.

2. Influence in ARFIMA models

A Gaussian sequence (Z t ) is called an ARFIMA(p, d, q) process if (Z t ) satisfies the equation

(1 − φ1 B − · · · − φp B p)Z t = (1 + θ1 B + · · · + θq Bq)(1 − B)−dεt , (4)

where B is the backward shift operator B Z t = Z t−1, (εt ) is a sequence of zero-mean uncorrelated Gaussian random
variables with the same variance σ 2

ε , d ∈ (−1, 1/2), and the polynomials φ(z) = 1 − φ1z − · · · − φpz p and
θ(z) = 1 + θ1z + · · · + θq zq have no common zeros and neither φ(z) nor θ(z) has zeros in the closed unit disk
{z ∈ C : |z| ≤ 1}. The unique causal moving average satisfying (4) is the process

Z t =

∞∑
k=0

ψkεt−k, (5)

where (ψk)k∈N are called the MA(∞) parameters of (Z t ) and are the coefficients in the Taylor series expansion of
ψ(z) = θ(z)φ(z)−1(1 − z)−d for |z| < 1. The process (Z t ) admits the mean-squared convergent autoregressive
representation
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Z t = εt −

∞∑
k=1

πk Z t−k,

where (πk)k∈N are called the AR(∞) parameters of (Z t ) and are the coefficients in the Taylor series expansion of
π(z) = θ(z)−1φ(z)(1 − z)d for |z| < 1. If d ∈ (0, 1/2), the covariance function of (Z t ) is not summable, the spectral
density of (Z t ) has a pole at the origin, and (Z t ) is a long-memory process.

Since long-memory processes are not Markovian, all linear state-space representations of the ARFIMA process
(Z t ) are infinite-dimensional. Despite this, exact Kalman filter computations can be made based on the finite sample
(Y1, . . . , Yn). However, the exact recursions are computationally intensive. To avoid such calculations, the infinite-
dimensional state-space system can be very well approximated by a finite representation (Chan and Palma, 1998). For
this, we consider the approximation of (5) given by

Yt =

m∑
k=0

ψkεt−k, (6)

which corresponds to a MA(m) process in contrast to the MA(∞) process (5). Taking X t = (X t (1), . . . , X t (m))′,
where

X t (i) = E[Yt+i−1|It−1] =

m∑
k=i

ψkεt+i−1−k

for 1 ≤ i ≤ m and It−1 = sp{εt−i ; i ≥ 1}, (Yt ) has the state-space representation (Brockwell and Davis,
1991, Example 12.1.6)

X t+1 = F X t + Hεt , (7)

Yt = G X t + εt , (8)

with

F =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 , G = [1, 0, . . . , 0], H =


ψ1
ψ2
...

ψm−1
ψm

 . (9)

In this case, we have

Q = σ 2
ε H H ′, S = σ 2

ε H ′, R = σ 2
ε . (10)

The approximate representation (6) of the ARFIMA(p, d, q) process (Z t ) has computational advantages over the
exact one. Indeed, the matrices involved in the truncated Kalman equations are of order m × m, and then only m2

evaluations are required for each iteration. Therefore, the order of the MLE algorithm is reduced from O(n3) to
O(n). The consistency, efficiency and asymptotic normality of the MLE obtained with the approximate state-space
representation are established in Chan and Palma (1998). Moreover, it is reported there that the truncated MLE works
well with small truncation parameter m relative to the sample size n, for example, m = 6 for n = 100 and m = 30 for
n = 1000. In what follows, we focus our analysis on the state-space system described by (7) and (8).

In order to compute the influence measure D defined by (1), we need to calculate the h-step predictors Y h
n and

Y h,K
n as well as their prediction error variances Σ h

n and Σ h,K
n . Since (Yt ) is a MA(m) process, Yn+h is uncorrelated

with Yt for all 1 ≤ t ≤ n when h > m, and then Y h
n = Y h,K

n = 0 and Σ h
n = Σ h,K

n = E[Y 2
n+h] = σ 2

ε

∑m
k=0 ψ

2
k

when h > m. Now, when 1 ≤ h ≤ m, both predictors can be obtained by solving linear orthogonality relations. In
the case of Y h

n , Bondon (2001) has established simple relations between the prediction coefficients which are not only
recursive with respect to the order n but also recursive with respect to the step h. In the case of Y h,K

n , the covariance
matrix of Y K is not Toeplitz in general, and then recursive methods based on the Levinson algorithm are useless. For
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this reason, we use the Kalman recursions and we show in the Appendix that

Y h
n = X̂n+1(h), Y h,K

n = X̂ K
n+1(h), (11)

where X̂n+1(h) and X̂ K
n+1(h) are the h-th component of the state predictors X̂n+1 = E[Xn+1|Y ] and X̂ K

n+1 =

E[Xn+1|Y K
], respectively. Furthermore,

Σ h
n = Ωn+1(h, h)+ σ 2

ε

h−1∑
k=0

ψ2
k , Σ h,K

n = Ω K
n+1(h, h)+ σ 2

ε

h−1∑
k=0

ψ2
k , (12)

where Ωn+1(h, h) and Ω K
n+1(h, h) are the h-th diagonal elements of the error covariance matrices Ωn+1 = E[(Xn+1 −

X̂n+1)(Xn+1 − X̂n+1)
′
] and Ω K

n+1 = E[(Xn+1 − X̂ K
n+1)(Xn+1 − X̂ K

n+1)
′
], respectively. Now, X̂n+1 and Ωn+1 are

obtained through the Kalman prediction recursions detailed in Brockwell and Davis (1991, Proposition 12.2.2) with
the initial condition X1 =

∑
∞

k=0 Fk Hε−k . To obtain X̂ K
n+1 and Ω K

n+1, we use the same recursions but the state-
space model needs to be modified as explained by Shumway and Stoffer (1982) and Brockwell and Davis (1991,
Section 12.3). Specifically, the state equation (7) is unchanged while the observation equation (8) is replaced by

Y ?t = G t X t + ε?t , (13)

where

G t =

{
G if t 6∈ K ,
0 if t ∈ K ,

ε?t =

{
εt if t 6∈ K ,
Nt if t ∈ K ,

where (Nt ) is a sequence of independent zero-mean Gaussian random variables with the same variance σ 2
N which is

independent of X1 and (εt ). Accordingly, the noise covariance matrices are now

Q = σ 2
ε H H ′, St =

{
σ 2
ε H ′ if t 6∈ K ,

0 if t ∈ K ,
Rt =

{
σ 2
ε if t 6∈ K ,
σ 2

N if t ∈ K .
(14)

The calculations of (X̂n+1,Ωn+1) and (X̂ K
n+1,Ω

K
n+1) are detailed in the Appendix. The procedure applies to any set

K , and therefore it can be used for both single-case deletion and multiple-case deletion diagnostics.
Consider now the influence measure J defined by (3) where c = (1, 0, . . . , 0)′. According to (8), c′ X t = X t (1) =

Yt − εt . If
∑m

k=0 ψk zk
6= 0 for all z ∈ C such that |z| = 1, a well-known result from complex analysis guarantees the

existence of r > 1 such that(
m∑

k=0

ψk zk

)−1

=

∞∑
k=−∞

αk zk, r−1 < |z| < r,

the Laurent series being absolutely convergent in the specified annulus. Then, according to Brockwell and Davis
(1991, Proposition 3.1.2), (6) can be inverted to give εt =

∑
∞

k=−∞
αkYt−k . Therefore,

X t (1) =

∞∑
k=−∞

βkYt−k,

where

βk =

{
−αk if k 6= 0,
1 − α0 if k = 0.

Observe that X t (1) can also be written as

X t (1) =

−m∑
k=−∞

βt−kYk +

n+m∑
k=1−m

βt−kYk +

∞∑
k=n+m+1

βt−kYk . (15)
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Fig. 1. Nile River influence measure D (out-of-sample predictors).

Since (Yt ) is a MA(m) process, the first and the third term on the right of (15) are uncorrelated with Yt for all
1 ≤ t ≤ n, and then

X t |n(1) =

n+m∑
k=1−m

βt−kE[Yk |Y ], X K
t |n(1) =

n+m∑
k=1−m

βt−kE[Yk |Y
K
],

where

E[Yk |Y ] = Yk if 1 ≤ k ≤ n, E[Yk |Y
K
] = Yk if k ∈ {1, . . . , n} \ K .

Again, since the covariance matrix of Y K is not Toeplitz in general, the calculation of E[Yk |Y K
] is a demanding

task. Therefore, we use the Kalman fixed point smoothing recursions presented in Brockwell and Davis (1991,
Proposition 12.2.4) with the state-space model (7) and (8) to get X t |n and Ωt |n , and with the state-space model (7) and
(13) to get X K

t |n and Ω K
t |n . The calculations are detailed in the Appendix for any set K .

3. Illustration

In this section, we illustrate the use of influence measures in the context of long-memory series. To this end,
consider the well-known River Nile data consisting of yearly minimal water levels for the years 622 A.D. – 821
A.D. recorded at the Rhoda Gauge. Following Beran (1994), an ARFIMA(0, d, 0) model is fitted to this series by
MLE after subtracting the sample mean. The estimated parameters are d̂ = 0.336 with estimated asymptotic standard
deviation σ̂d = 0.056, and estimated noise standard deviation σ̂ε = 0.898. The computation of the estimates and
the influence measures are carried out by means of the approximate state-space models (7)–(8), and (7), (13) with
m = 80. After fitting the model, we calculate the following four influence measures where the set K corresponds to
the singleton K = {t1} for each time t1 in the data set. For greater clarity, the time scale in years is replaced by the
index k = 1, . . . , 200.

(a) Influence on out-of-sample predictors. Fig. 1 displays the influence measure D as a function of k. Then
D assesses the effect of deleting the k-th observation on the set of out-of-sample forecasts {Y 1

200, . . . , Y 50
200}. We

use H = 50 since it represents 25% of the sample. From Fig. 1, the most influential observations seem to be
k = 25, 39, 98, 188, 197, 198, 200. However, we would expect observations closer to the end of the series to be
more influential on the out-of-sample forecasts than observations far back into the past. Some theoretical justifications
can be found in Pourahmadi (2001, Section 8.3) and Bondon (2005). For instance, consider for a stationary time series
(Z t ) the simple problem of predicting Zn+1 from {Z t ; t ≤ n, t 6= 0}, i.e. when only Z0 from the past is missing. It
was shown by Pourahmadi and Soofi (2000) that the increase in variance due to Z0 being missing or excluded is

δn =
π2

n+1
n∑

k=0
π2

k

σ 2,

where σ 2 is the innovation variance of (Z t ) and (πk) are the AR(∞) parameters of (Z t ). Hence, when the sequence
(|πk |) is decreasing, the influence of Z0 on the prediction of Zn+1 decreases as n increases. For instance, when (Z t )
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Fig. 2. Expected influence measure ED (out-of-sample predictors).

Fig. 3. Nile River influence measure A (out-of-sample predictors).

is an ARFIMA(0, d, 0) process, we have

πk =
0(k − d)

0(k + 1)0(−d)
, (16)

where 0 is the Gamma function, and then |πk+1| = |πk |(k − d)/(k + 1) < |πk |. This aspect is shown in Fig. 2
where we plot the expected D (ED) measure. This measure is computed as the average of D over 100 simulations of
ARFIMA(0, d, 0) processes with d = 0.33, σε = 0.90 and n = 200. In order to discount this effect, we compute the
adjusted measure

A = max(D − E D, 0),

so that A indicates the presence of overinfluential observations. Fig. 3 displays A and suggests that observations
k = 25, 39, 98, 188 may be over-influential. In particular, the observations k = 25 and k = 39 which are close to the
beginning of the series appear to have a large impact on what happens beyond the end of the series.

Fig. 4 illustrates how the out-of-sample predictors are numerically changed by the deletion of an influential
observation as opposed to the deletion of a noninfluential case. We plot the measure

∆h = 100

∣∣∣∣∣1 −
Y h,K

n (θ̂K )

Y h
n (θ̂)

∣∣∣∣∣ ,
for h = 1, . . . , 50, n = 200, K = {25} and K = {150}. The estimates of the long-memory parameter are d̂ = 0.336
(full sample), d̂(25)

= 0.354 (observation k = 25 deleted), and d̂(150)
= 0.334 (observation k = 150 deleted). It

is clear that the deletion of the influential case k = 25 modifies the predictors much more than the deletion of the
noninfluential case k = 150, even though the case k = 25 is farther into the past than the case k = 150. Moreover,
we see that the effect of the observation k = 25 on the h-step predictor increases with h which shows the long-term
influence.
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Fig. 4. Effect of an influential/noninfluential observation on the h-step predictor.

Fig. 5. Nile River influence measure J (smoothers).

(b) Influence on the state smoothers. The influence measure J defined by (3) where c = (1, 0, . . . , 0)′ is
considered in this illustration and is displayed in Fig. 5. The results suggest that the most influential observations are
k = 25, 35, 39, 98, 188. Thus, the smoother influence measure seems to indicate one more observation as potentially
influential than A, namely the case k = 35.

(c) Mahalanobis distance. This metric assesses the impact of observations in K on the in-sample predictions of the
process. Following Peña (1991), we may write the Mahalanobis distance as

M =

(
p(d̂)− p(d̂ K )

)′ Σ̂−1
p

(
p(d̂)− p(d̂ K )

)
nσ̂ 2

ε

,

where p(d̂) and p(d̂ K ) are the vector (π1, . . . , πn)
′ where d is replaced in (16) by d̂ and d̂ K , respectively, and σ̂ε2Σ̂p

is the estimated asymptotic covariance matrix of p(d̂). According to this distance, the most influential observations
seem to be k = 25, 35, 39, 98, 188, see Fig. 6. Consequently, in this case the Mahalanobis distance indicates similar
influential observations as the smoother measure J .

(d) Cook-type distance. This influence measure assesses the impact of observations in K on the estimate of the
long-memory parameter d , and following Chatterjee and Hadi (1988, page 151) it can be written as

C =
|d̂ − d̂ K

|

σ̂d
.

Fig. 7 displays the measure C for the Nile River data. Due to the lack of theoretical baselines for this measure in
the case of long-memory time-series models, we have selected potentially overinfluential cases as follows. Observe
that the cases k = 25, 188 have been also flagged as highly influential by all the previous measures. Combining
this information with the Cook’s distance, we have chosen these two cases as overinfluential observations. However,
according to Fig. 7, we should also select the case k = 70 among the most influential.
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Fig. 6. Nile river influence measure M (Mahalanobis).

Fig. 7. Nile River influence measure C (Cook).

Table 1
Nile River data: Summary of influential observations

Influence measure Observation
25 35 39 70 98 188 197 198 200

Out-of-sample predictors (D)
√ √ √ √ √ √ √

Adjusted D (A)
√ √ √ √

State smoothers (J )
√ √ √ √ √

In-sample predictors (M)
√ √ √ √ √

Parameter estimate (C)
√ √ √

Table 1 summarizes the results. Observations k = 25 and k = 188 seem to be overinfluential in terms of both
in-sample and out-of-sample predictors, state smoothers and estimation of the long-memory parameter. Observation
k = 35 is flagged as influential by both the smoothers and the Mahalanobis distances. Observations k = 39 and k = 98
seem to be overinfluential in terms of both in-sample and out-of-sample predictors and smoothers, while observation
k = 70 appears to have substantial influence on the parameter estimation. Finally, observations k = 197, 198, 200 are
flagged as influential by the out-of-sample prediction influence measure D.

In order to gain insight about the reasons why some observations are flagged as influential by different diagnostic
techniques, we plot the squared differences and the cumulative squared differences of the Nile River data in Figs. 8
and 9, and the original series and the cumulative corrected mean series in Fig. 10.

In Figs. 8 and 9, the dotted vertical lines represent the locations of potentially influential observations. The legends
on each case indicate the corresponding measure. From these plots, note that some cases (k = 25, 188) are associated
with large jumps in the data while other flagged cases (k = 197, 198, 200) are related to their position at the end of
the series. As discussed above, we would expect some impact of these observations on out-of-sample predictors.



W. Palma et al. / Computational Statistics and Data Analysis 52 (2008) 4487–4501 4497

Fig. 8. Squared differences of the Nile River series with all the flagged locations (vertical dotted lines). The legends on each case indicate the
corresponding influence measure.

Fig. 9. Cumulative squared differences of the Nile River series with all the flagged locations (vertical dotted lines). The legends on each case
indicate the corresponding influence measure.

Fig. 10. Flagged locations (vertical dotted lines) (a) Original Nile River series, (b) Cumulative corrected mean Nile River series.

We observe in Fig. 10(a) that most flagged locations are either in the first half or by the end of the series. In the
second half of the time series, there is a stretch of data with relatively low levels and no flagged locations. Analogously,
we notice in Fig. 10(b) that all the flagged points seem to be located in upper-trend periods, or equivalently, periods
with high average water levels.

Finally, observe that most of the techniques discussed in this paper suggest that around the year 720 A.D. (k = 98),
there are some possible highly influential observations. To some extent this result coincides with a structural change
previously noted by Beran (1994, Section 10.3).
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The procedure to calculate the quantities in the influence measures discussed in this section may be summarized in
the following two steps.

Step I. Calculation of parameter estimates, Kalman predictors and smoothers with the full sample:

(i) Select an initial value θ (0) for the parameter vector θ and deduce initial values σ 2(0)
ε for σ 2

ε , and ψ (0)k for the
MA(∞) parameters ψk for k = 1, . . . ,m.

(ii) For s = 1, . . . , n, run the Kalman recursions (18) to obtain X̂s(1)(0) and Ω (0)
s , and compute `(θ (0)) where

`(θ) = −
1
2

n∑
s=1

{
log(Ωs(1, 1)+ σ 2

ε )+
(Ys − X̂s(1))2

Ωs(1, 1)+ σ 2
ε

}
is the log-likelihood function of Y (up to a constant).

(iii) Run one iteration of the maximization procedure for `(θ) to obtain a new set of estimates, θ (1).
(iv) Iterate the steps (i)–(iii) until convergence replacing θ ( j−1) by θ ( j) at the j-th iteration. Denote the resulting

parameter vector by θ̂ .
(v) Calculate Y h

n (θ̂) and Σ h
n (θ̂) for h = 1, . . . , H using (11) and (12), respectively, and determine X t |n(θ̂) and

Ωt |n(θ̂) for t = 1, . . . , n using (20).

Step II. Calculation of parameter estimates, Kalman predictors and smoothers with observations in K treated as
missing:

(i) Take θ̂ obtained in step I(iv) as an initial value θ (0) for the parameter vector and apply step I(i).
(ii) For s = 1, . . . , n, run the Kalman recursions Eq. (18) with the missing data modifications Eq. (19) to obtain

X̂ K
s (1)

(0) and Ω K (0)
s , and compute `K (θ (0)) where

`K (θ) = −
1
2

n∑
s=1

{
log(Ω K

s (1, 1)+ σ 2
ε )+

(Y ?s − X̂ K
s (1))

2

Ω K
s (1, 1)+ σ 2

ε

}
is the log-likelihood function of Y K (up to a constant).

(iii) Proceed as in steps I(iii)–(iv) where `(θ) is replaced by `K (θ). Denote by θ̂K the resulting parameter vector.
(iv) Calculate Y h,K

n (θ̂K ) and Σ h,K
n (θ̂K ) for h = 1, . . . , H using (11) and (12), respectively, and determine X K

t |n(θ̂
K )

and Ω K
t |n(θ̂

K ) for t = 1, . . . , n using (21).

4. Conclusion

In this paper, we have proposed and implemented statistical methodologies to assess the influence of observations in
long-memory models. The measures discussed are based on the Kullback–Leibler discrepancy between two densities
and they assess the impact of deleting one or more observations on out-of-sample forecasts or on state smoothers. The
diagnostic techniques discussed in this work are complementary since they focus on assessing influence in different
aspects of the model, namely out-of-sample predictors, state smoothers, in-sample predictors and parameter estimates.

In order to make these methodologies applicable in practice, we have explained how to compute the diagnostic
measures by using efficient Kalman filter techniques. These state-space methods are crucial for solving two main
problems related to the calculation of influence measures for long-memory models, namely the need for efficient
computation of estimates, predictors and smoothers along with their variances, and the necessity of appropriate
techniques for dealing with missing values. The methodology can be summarized as follows: (a) Represent the long-
memory process in terms of a state-space model, (b) Run Kalman recursions to obtain parameter estimates, predictors
and state smoothers with all the data and then with deleted cases, (c) Obtain the influence measure and (d) Detect
over-influential observations.

We have illustrated the use of the diagnostic techniques with an influence analysis of the well-known River Nile
data. From this application, we may conclude that for long-memory processes, some observations may have not only
a local influence, but also a large impact, far beyond the end of the series.

At this stage of the development, it is more appropriate to view these detection techniques as exploratory tools
for flagging some observations as potentially influential. This information can be used for verifying data integrity
(e.g. consistency, accuracy, correctness), checking for possible changes of the process (e.g. structural changes),
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warning about possible problems with predictions of future values, etc. However, further work for deriving practical
levels of overinfluence for these measures is necessary. Along this line, large-scale Monte Carlo studies may prove to
be helpful. Extensions of these techniques to the detection of influential observations in regression models with long-
range dependent errors are being explored along with other related methodologies such as local-influence measures.
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Appendix

Calculations of (Y h
n ,Σ

h
n ) and (Y h,K

n ,Σ h,K
n ). According to Brockwell and Davis (1991, Eqs. (12.2.11–12)), we have

Y h
n = G Fh−1 X̂n+1 and Y h,K

n = G Fh−1 X̂ K
n+1, and then (11) follows from (9). It results from Brockwell and Davis

(1991, Eqs. (12.2.13–14)) and (9) and (10) that Σ h
n = Ωh

n (1, 1)+ σ 2
ε , where

Ωh
n (i, j) = Ωh−1

n (i + 1, j + 1)+ σ 2
ε ψiψ j (17)

for h ≥ 2 and 1 ≤ i, j ≤ m with the convention Ωh
n (i, j) = 0 if i > m or j > m, and the initial condition Ω1

n = Ωn+1.
Applying (17) recursively, we get Ωh

n (1, 1) = Ω1
n (h, h) + σ 2

ε

∑h−1
k=1 ψ

2
k , and therefore we get the expression of Σ h

n

given in (12). To obtain the expression of Σ h,K
n , we note that Σ h,K

n satisfies the same recursions that Σ h
n but with the

initial condition Ω1
n = Ω K

n+1.

Calculations of (X̂n+1,Ωn+1). Applying Brockwell and Davis (1991, Eqs. (12.2.6–7)) to the state-space model (7)
and (8), we deduce from (9) and (10) that X̂n+1 and Ωn+1 are determined by the following recursions for s = 1, . . . , n,

X̂s+1(i) = X̂s(i + 1)+
Θs(i)

Ωs(1, 1)+ σ 2
ε

(Ys − X̂s(1)),

Θs(i) = Ωs(i + 1, 1)+ σ 2
ε ψi ,

Πs+1(i, j) = Πs(i + 1, j + 1)+ σ 2
ε ψiψ j ,

Υs+1(i, j) = Υs(i + 1, j + 1)+
Θs(i)Θs( j)

Ωs(1, 1)+ σ 2
ε

,

Ωs+1 = Πs+1 − Υs+1,

(18)

where 1 ≤ i, j ≤ m with the convention X̂s(i) = Ωs(i, 1) = Πs(i, j) = Υs(i, j) = 0 if i > m or
j > m, and the initial conditions X̂1 = E(X1), Π1 = E(X1 X ′

1), Υ1 = E(X1)E(X1)
′, Ω1 = Π1 − Υ1. Since

X1 =
∑

∞

k=0 Fk Hε−k =
∑m−1

k=0 Fk Hε−k , we have X̂1 = Υ1 = 0, Ω1 = Π1, and

Π1(i, j) = Π1( j, i) = σ 2
ε

m− j∑
k=0

ψi+kψ j+k, 1 ≤ i ≤ j ≤ m.

Calculations of (X̂ K
n+1,Ω

K
n+1). Applying Brockwell and Davis (1991, Eqs. (12.2.6–7)) to the state-space model (7)

and (13), it results from (14) that X̂ K
n+1 and Ω K

n+1 are determined by the recursions (18) with the same conventions
and initial conditions, but where X̂s , X̂s+1, Ωs and Ωs+1 are replaced by X̂ K

s , X̂ K
s+1, Ω K

s and Ω K
s+1, respectively, and

equation defining Θs is replaced by

Θs(i) =

{
Ω K

s (i + 1, 1)+ σ 2
ε ψi if s 6∈ K ,

0 if s ∈ K .
(19)

Calculations of (X t |n,Ωt |n). Applying Brockwell and Davis (1991, Eqs. (12.2.18–20)) to the state-space model (7)
and (8), we deduce from Eqs. (9) and (10) that X t |n and Ωt |n are determined for fixed t by the following recursions,
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which are solved sequentially for s = t, t + 1, . . . , n:

X t |s(i) = X t |s−1(i)+
Ωt,s(i, 1)

Ωs(1, 1)+ σ 2
ε

(Ys − X̂s(1)),

Ωt,s+1(i, j) = Ωt,s(i, j + 1)−
Ωt,s(i, 1)Θs( j)

Ωs(1, 1)+ σ 2
ε

,

Ωt |s(i, j) = Ωt |s−1(i, j)−
Ωt,s(i, 1)Ωt,s( j, 1)

Ωs(1, 1)+ σ 2
ε

,

(20)

where 1 ≤ i, j ≤ m with the convention Ωt,s(i, j) = 0 if j > m, X̂s , Θs and Ωs are obtained by (18), and the initial
conditions are X t |t−1 = X̂ t and Ωt,t = Ωt |t−1 = Ωt .

Calculations of (X K
t |n,Ω

K
t |n). Using Brockwell and Davis (1991, Eqs. (12.2.18–20)) with the state-space model (7)

and (13), it results from (14) that X K
t |n and Ω K

t |n are determined for fixed t by the following recursions, which are
solved successively for s = t, t + 1, . . . , n:

X K
t |s(i) =

X K
t |s−1(i)+

Ωt,s(i, 1)

Ω K
s (1, 1)+ σ 2

ε

(Ys − X̂ K
s (1)) if s 6∈ K ,

X K
t |s−1(i) if s ∈ K ,

Ω K
t |s(i, j) =

Ω K
t |s−1(i, j)−

Ωt,s(i, 1)Ωt,s( j, 1)

Ω K
s (1, 1)+ σ 2

ε

if s 6∈ K ,

Ω K
t |s−1(i, j) if s ∈ K ,

(21)

where Ωt,s is defined in (20) in which Ωs is replaced by Ω K
s and Θs is given by (19), and the initial conditions are

X K
t |t−1 = X̂ K

t and Ωt,t = Ω K
t |t−1 = Ω K

t .
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