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Abstract .

The problem of detecting changes in the parameters of a dynamical sys-
tem through statistical techniques is considered. In particular, a rotor
is modelled as a stochastic linear dynamical system. An instrumental
test for fault detection in its normal performance is developed. Compu-
tational simulations are carried out.

1. Introduction

The problem of fault detection in dynamical systems has received n lot of atten-
tion, in many fields of application. In this paper we apply some modern techniques
for modelling and detecting small changes in the eigenstructure of a rotor. Commonly,
Spectral Analysis has been used in the study and monitoring of rotational machines
when structural faults arise. Spectral methods are widely used in this context and can
be called “nonparametric methods” because no statistical hypothesis are made in its
implementation, [7]. However, in recent years several improvements have been carried
out, motivated by the increasing availability of computer power. A number of para-
metric methods based on time domain have been developed on this subject. Statistical
techniques such as maximum likelihood methods and linear stochastic system should
be mentioned in this respect. These new techniques are based on the partial knowl-
edge of the internal structure of dynamic phenomena and involve a sophisticated signal
modelling. State space equations have been used for describing rotational systems and
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parametric statistical models —such as Markov-Gaussian process~ have been studied for
describing input—output signals. In this way, optimal processing of sensor information
can be made. ‘

The objectives of this work are basically two: the modelling of a rotor as a stochastic
linear dynamical system and the developing of a statistical test for failure detection.

2. Description of mechanic system and modelling

The system that we are cbnsidering is a rotor, Fig. 1. The torsional vibration of a
rotor can be modelled as a mechanic system which obeys the following equations:

Gn(t) + 20wnaa () + Wian(t) = Vi Na(t) n=1,...5 1)

an(o) = Qg dn(o) = Qp,

where a, is the angular position corresponding to n—oscilation mode and w, its eigen-

frequency, o is the damping coefficient, and N(t) is the external excitation assumed to
be Gaussian white noise with variance f,.

The observation vector Y (t) contains the acelerometer information, which is de-

scribed by

5
Yi(t) = Y (8u(b;) — dula;))an(t) + /g Naoj(t) j=1,2 (2)
k=1

where ¢4(¢) = (V2/L) cos(kn/L¢); L is the length of rotor; aj, b; are the positions of
acelerometers, and N,;(t) is Gaussian white noise with variance g;.

The system described by (1) and (2) is equivalent to the following continuos-time
state space model:

| X(t)= AX(t) + FN(t)
X(O) = 4\'0 . (3)
Y(t) = CX(t) + GN(t)

where:

. . . N\T
X = (0],02,"',05.01,02,"‘,05)

N = (NnNn T v‘VlSs N?ls Nn)T
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2.1 Properties of state space representation

Stability, observability and controllability are basic concepts in Control Theory. In
loose terms, stability means that the term in the solution to (3), associated to the initial
conditions, will asymptotically vanish.

Also, a state is controlable if it can be reached from the zero state in some finite
number of steps by an appropiate input. Finally, the dynamic system is observable if
Xo can be determined from observations, [3].

The conditions above are fundamental for system performance and test implemen-
tation. _

In our case, the dynamic system is stable, controlable and observable.

2.2 Discrete-Time equivalent system .

Since a digital computer is intrinsically a discrete-time system and due to sampling
needs, we present the discrete time equivalent model:

Xn+l = A'X,+ F'N, (4
Y, = CX,+GN, | )

“where A’ = ¢4, F' = /AF and A = sampling interval.

This discrete-time system is stable, controlable and observable if the sampling in-
terval A is such that :

Im[X; — Aj] # 27n/A, whenever Re[A; — A;] = 0, where {);] are the eigenvalues of 4,

(5).

2.3 2-Modes modelling

In many mechanic applications a reduced model is proposed, that considers only the
first two oscilation modes. We will also analyze this simplified model.
In this way, the model is reduced to:
z(t) = Bz(t) + FN(t)
z(0) = z¢ (5)
y(t) = Dz(t) + GN(t)

where
Qg nn
(04] ‘ ny2
=1 N =
[ 4] ny

ay ny
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2.4 Explicit Solution of Continuos—Time State Equations

Continuous—time state equations have an explicit solution, see [4). In this case, the
linear dynamical system obeys the state space equations:

X(t) = AX(t) +FN(t)

X(0) = | (6)
Y(t) = CX(t) +GN(t)

It is clear that it suffices to find a solution for X (t) since Y(t) 1s a linear function of
the state. The solution at t of the above differential equations with initial condition X,
att =01is: . .
X(t) = exp(At)Xo + /0 exp[A(t — 3)]FN(s)ds )

Therefore, an explicit solution for Y(t) is:
. t
Y(t) = Cexp(At) + /0 Cexp[A(t — s)|F N(s)ds + G N(t) (8)

In this context, the exp(At) expression means
o0
exp(At) = ) _(At)"/n!
n=0 ’
2.5 Statistical behavior of state and observation realizations

Assuming that E[X(0)] = y, the expected value of X(t) is:
E{X(t)] = pexp(At)
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Because the system is stable, uexp(At) — 0 when t — oo, hence E[X(t)] — 0 when
t — oco. In fig. 2 we can see the approximate behavior of the state through time.

Let X(t) = X(t) — E[X ()], then the state variance matrix is given by the following
expression:

E[X()X(t)T] = exp(At)Aoexp(ATt) + .[ exp(As)FFT exp(ATs)ds 9)

Let Ry(t) = exp(At)A,exp(At) the initial variance, i.e. the variance due to the
initial state, and let

Ry(t) = /o ‘ exp(As)FFT exp( AT s)ds (10)

the variance due to the noise. We can then write the following variance decomposition:
Var [X(¢)] = Ro(t) + Ru(t) . (11)

When the system is (A, F') controlable, the matrix R,(t) is not singular. This means
that the noise is propagated to all components of the state vector. Furthermore, if the
system is stable, then Ry(t) tends to zero when t tends to infinity and then R(t) tends
to the covariance matrix R, defined by:

R, = /ooo exp(As)FFT exp(ATs)ds (12)

i.e. the state variance matrix decreases asympotically to R.
Fig. 3 and Fig. 4 show the asymptotic behavior of Ry and R, respectively.

3. Global test for detecting changes

An important and recently developed test for detecting changes in dynamical systems
is described in [4]. We have adapted this procedure to the problem of fault detection in
the rotor. The basic idea involved in the test is to transform the state space represen-
tation into a multidimensional process ARMA and then use the generalized likelihood
ratio test x? for detecting changes in the mean of a Gaussian process with known co-
variance matrix. An advantage of this test is its robustness with respect to possible
nonstationary excitations.

3.1. Global test

Let the dynamic system be described by
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X =FX + W,

13
v=HX, (13)
with dim(X) = n, dim(Y') = r and W, white noise with Cov (W,) = Q,.
Consider the multidimensional process ARMA(p,p — 1) defined by
P -1
Yi =) Aiu+ ) Bi(t)E.; (14)
k=1 J=1

where A is an autorregressive r X r matrix, B; is a moving average r X r matrix, and
E, is a Gaussian white noise with identity covariance matrix.

It is shown in [1], that models (13) and (14) are equivalent.. Furthermore, model
(14) can be obtained directly from model (14) by solving the following linear system of
equations:

p
HFP =Y AHF ' (15)

B; = H(F' + A;F'™' + ... + A;F + A;) (16)

3.2. Instrumental statistic

Let .
Un(s) =3 Z2W/] (17)
t=1
where ZT = (Y[T,,--- ,Y,T__n;,) is a vector of N > p instrumental variables, and where
W, is :
Wi=Y - Y AY, =Y. - 674, (18)
=1
with ,
6 = (YL, YD) (19)
and
07 = (A A1) (20)

Matrix Un(s) can be writen in the following form:

un(e) =t ( 57 ) (20)

where H,,; () is the empirical Hankel matrix of the observed process (V).
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Ro(s) -+ Reor(s)

M= P : (22)
Rper(s) -+ Rppqa(s)
Rm(s) = 'Z }H-m (23)

Under the hypotheses Hy of no change, i.e. § = §°, W, is a MA process, which is
uncorrelated with Z,, and thus Un(s) has zero~mean.

On the other hand, under the hypotheses H, of small change‘ ie. § = 6°466/\/s,
the mean of Un(s) is equal to the mean of:

Lot s
S Hi (2160 (24)

Using Kronecker products (see [4]), we can define
Var 6,(s) = COL (UL(s)) = 3" Z. @ W, (25)
=1

Under Hg, Un(s) has covariance matrix In(s) given by

Ine) =Y T E(22LeWWL) (26)

t=1 y=~p41
For instance, an estimator of Xy is:

“:J'N(J Z Z (z,2T, ®W1W(T-.') . (27)
=1 i=-p+1

It is shown in [5), that (l/s)EN is a consistent estimator of (1/s)Zn(s) under both
hypotheses H, and H,, and that (1/,/s)Un(s) is asymptotically Gaussian distributed
under both hypotheses. '

Because of the mean value of Un(s) under Hl, none of the changes 60 belonging to
the kernel of (1/sYHT y(s) can be detected. :

Now, recall that if a vector U is Gaussian with mean u and covariance X, for testing
u = 0 against 4 € Range (M) where M is a full column rank matrix, the generalized
likelihood ratio test is:

UTE ' MMTE-' M) MTE-'U (28)
In order to apply this test, it is necessary to reduce

M=H ()R (29)
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to a full column rank matrix. This is possible because the system is observable. Fur-
thermore, in the case that the number of sensors r divides the state dimension n, the
statistic (28) reduces to

to = Var 93(3)2;1(3) Var 8,(s) (30)

3.3. Application to fault detection in a rotor

The state space model for torsional vibration of rotor must be slightly modified to
use the global test. Model (3) can be written as:

A0 F 0
a=[C I]Z, | (32)

Model (31) is. another . state space representation of rotor, where

- | X, . N, o . .
Zn = [ GN, ] is the new state vector, W, = { Nops } is not white noise and A

is a scalar value belonging to interval (0,1). This parameter must be introduced to
preserve stability of the transition matrix. '

In a first stage, the process of identification of modal frequencies or damping coeffi-
cients can be made by means of Spectral Methods.

In a second stage, in which we are concerned in the detection of changes it is possible
to set empirical thresholds for ¢, the deviation of ¢4 statistic from its normal values.

In our application, we assume that eigenfrequencies and damping coefficients are
known; therefore we are concerned only with small changes of these modal frequencies.

We applied the global test to model (31) and carried out computational simulations
obtaining useful insights on their performance.

3.4. Simulation results

Tables 1, 2 and 3 show the results of the simnulations. Table 1 shows results from a
2-modes system, for different changes in its eigenfrequencies over 4500 records. Table 2
shows results from a 5-modes system for different changes in its eigenfrequencies over
800 records of observations. Table 3 shows results from a 2-modes system for 1% of
variation in the first eigenfrequency over 4000 records.

The paremeters used in these simulations are:
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fa=10" n=1,...,5

gn=10"2 " n=1,2
Initial State X =0
A=0.5

In all cases, the instrumental test increases when changes arise. For instance, in
Table 3, the behavior of t4 is extremely regular in both normal and not normal cases.

Results from 5-modes modelling can not be compared with results from 2-modes
because they use distinct lenghts of records or differents changes in the eigenfrequencies.

The computational algorithm is stable. In the practice, the instrumental test in-
creases when more data is added. Hence, it is possible to consider windows of 4000—5000
observations. '

3.4. Conclusions

In this paper we have presented a state space representation of a specific mechanic
system. We have stated that it is a stable-observable-controlable system, its behavior
being thereby asymptotically stationary. Furthermore we have applied a global test for
detecting changes in the eigenfrequencies of torsional vibration of the rotor. Decision
rules for fault detection can be implemented in all cases.
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Table 1: Global Test
2-Modes / 4500 observations

Experiment o w, ws to eps
1 0,001 1,5707 3,1415 740,9 0
2 0,001 14921 3,1415 7476 6,7
3 0,001 1,5707 2,9844 7454 4,5

Table 2: Global Test
5-Modes / 800 observations

Experimént' o w, w, to eps
1 0,001 1,570 3,1415 46,17 0
2 0,001 5,000 3,1415 61,88 15,71

3 0,001 1,570 6,000 5546 9,29

Table 3: Global Test
2-Modes / 4000 observations 1% variation in the first frequency

EX.NO/SCEd o wi : w3 to
123457 107% 1,5707 3,1415 799,819481
123457 10°% 1,5864 3,1415 800,531425

7389367 10~7 11,5707 3,1415 799,921031

7389367 107 11,5864 3,1415 800,432144
24081963 10~7 11,5707 3,1415 799,921006
24081963 107 1,5864 3,1415 800,432304
99999999 10-7 11,5707 3,1415 799,920922
99999999 10~7 1,5707 3,1415 800,432315
20011926 10~7 1,5707 3,1415 799,920025
20011926 1077 11,5864 3,1415 800,432517
30000000 107 1,5707 3,1415 799,921002
30000000 10-7 1,5864 3,1415 800,432132

00 ~J O U b W N =

— e
o= O O
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Resumen

Se considera el problema de deteccion de cambios en los parimetros
de un sistema dindmico a través de técnicas estadisticas, En particular,
se modela un rotor como un sistema dindmico lineal estocistico y se
desarrolla un test instrumental para detectar fallas en su funcionamiento
normal. Se realizan simulaciones computacionales.



