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SUMMARY 

This paper addresses both theoretical and methodological issues related to the prediction of 
long-memory models with incomplete data. Estimates and forecasts are calculated by means of 
state space models and the influence of data gaps on the performance of short and long run 
predictions is investigated. These techniques are illustrated with a statistical analysis of the mini- 
mum water levels of the Nile river, a time series exhibiting strong dependency. 
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1. INTRODUCTION 

Long-range dependent data arise in a wide variety of scientific disciplines, from hydrology to 
economics; see for example Bloomfield (1992), Robinson (1993), Beran (1994) and Ray & Tsay 
(1997). A well-known class of long-memory processes are the autoregressive fractionally integrated 
moving average (ARFIMA) models, defined by the discrete-time equation 

(D(B)( 1 - B)dyt = E)(B)et, 
for t = 1, ... , n, where IdI < 4, {?t} is a white noise sequence with zero mean and variance o2, B is 
the backshift operator Byt = yt D(B) and ((B) are polynomials of degrees p and q respectively 
with no common zeros and all their roots outside the unit circle, and (1 - B)d is the fractional 
difference operator. The ARFIMA models have long memory because their autocorrelations decay 
to zero at a hyperbolic rate, that is Pk -I k I` (oC > 0), for large k. Estimation of these long-range 
dependent models is discussed by Fox & Taqqu (1986), Dahlhaus (1989) and Sowell (1992), among 
others. The problem of data gaps in time series has received a great deal of attention; see for 
example Jones (1980), Ansley & Kohn (1983) and Penzer & Shea (1997). In particular, Palma & 
Chan (1997) and Chan & Palma (1998) develop state space methods for dealing with missing 
observations in the long-memory context. 

The main objective of this paper is to investigate the effects of missing values or data irregularities 
on the behaviour of prediction errors. If Yt denotes the value of the series at time t, the complete 
and the observed series are (yt, t E In = {1, . . . , n}) and (Yt, t E K,, = {k1, . . . , kr,} ' IJl) respectively. 
Information may be available in the pattern of missing observations, which is equivalent to the 
Kn, but this set is normally considered as fixed, or inference is performed conditional on it. For 
likelihood inference this may be justified by appealing to the 'missing at random' condition of 
Little & Rubin (1987, p. 10), which means here that Kn is not affected by the parameter 0 specifying 
the time series model or by the unobserved values {Yt: t E I, t ? K11}. The likelihood function L(0) 
is just the joint density of the observed values, which may be specified in many ways, leading to 
different formulae for the likelihood, e.g. integrated likelihood or recursive likelihood. Nevertheless, 
they all lead to equivalent functions. This paper focuses on the recursive likelihood for a Gaussian 
time series, which can be calculated by means of the Kalman filter. Let 9t be the best linear predictor 
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of Yt given the observed values up to time t - 1 and let A, be the variance of the one-step prediction 
error yt - t. With this notation the recursive likelihood is 

L(f))- (27) - r(I1H At exp F- { r A_ ]1 

Explicit state space formulae for calculating the predictions yt and At may be found in Palma & 
Chan (1997). 

Section 2 addresses the behaviour of short and long run forecasts of ARFIMA models in the 
presence of data gaps. Applications of these procedures to the analysis of the annual minimum 
water levels of the Nile river are discussed in ? 3. 

2. INFLUENCE OF MISSING VALUES ON PREDICTION 

2 1. Preliminaries 
This section studies the evolution of the one-step mean square prediction error, E(yt - it)2, for 

ARFIMA models, during and after a block of missing data. The results are then specialised to the 
case of a single missing observation. 

For mathematical convenience, the analysis is carried out by taking into account the full past, 
Yt-1, Yt-2, .., instead of the finite past, Yt-i, Yt-2,... Yl, of the time series. Throughout this 
section we use the concepts of exponential and hyperbolic rates of convergence of a sequence {Xk } 
to its limit x as k - oo. Exponential convergence corresponds to I Xk-X I < C1 a - k for large k, for 
some a > 1 and a positive constant C1, and hyperbolic convergence to IXk - xl < C2k ', for some 
C2 >0 and o > 0. 

2 2. Influence of a block of missing values 
When m consecutive observations, Yto 0. .'., Yto + m -1, are missing, the standard deviation of the 

prediction error increases during the data gap and then decreases, as new information is added. 
By stationarity, we may take to = 0. 

The following two propositions characterise this behaviour during and after the data gap and 
specify the convergence rates. Proofs are given in the Appendix. 

THEOREM 1. Let Yt be a stationary invertible process with AR(O0) decomposition Yt= 
?t-?- Z1 jYt-j and MA(OO) decomposition Yt=yJ=o jet-j. Suppose that the observations 

Yo, ... 5 Ym are missing and let ~//km = (yt, t < k, t 0 {0, 1, ... , m - 1}). Denote by e(t, m, k) the error 
of the best linear predictor of Yt given #k,n, that is given all the available information before time k, 
and by U2(t, m, k) its variance. Then 

(a) for k = 0, ..., m, a2(k, m, k) = L j /J; 
(b) for k > m, u2(k, m, k)- a u u2m2 maxj>k-m 7E 

Theorem 1(a) shows that, as expected, during the data gap the mean square prediction error 
increases monotonically up to time m, since no new information is being added. In contrast, after 
time m the variance of the prediction error decreases, as new observations are incorporated. The 
next result specifies the rates at which these error variances increase or decrease during and after 
the gap. 

THEOREM 2. With the notation of Theorem 1,for a long-memory ARFIMA model, 
(a) o2(k, m, k) - a2 _ Clk2d-l, for some constant C1 > 0 and large k (k < m); 
(b) o2(k, m, k) _ C2k-2d-2, for some constant C2 > 0 and large k (k > m). 

Also, for a short-memory ARMA model, 
(c) o2(k, m, k) - a2 _ C3aj -k for some constants C3 > 0, a1 > 1 and large k (k < m); 
(d) o'(k, m, k) -aE ~ C4a2j for some constants C4 > 0, a2 > 1 and large k (k > m). 

According to Theorem 2, there are two different hyperbolic rates for the mean square prediction 
error during and after the data gap. For example, if d = 0 40, the variance of the prediction error 
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during the gap increases at rate O(k-02), whereas it decreases to U2 at rate O(k-28). Thus infor- 
mation is lost during the block of missing observations at a much slower rate than that at which 
it is gained after the data gap. 

Theorems 1 and 2 assume the data gap length to be fixed. However, if the length of the gap 
increases to infinity, then the prediction process is statistically equivalent to that during the tran- 
sition period at the beginning of the time series, with no previous observation. The following result 
characterises the convergence of the prediction error in this case. 

THEOREM 3. Let o2(k, oo, k) be the variance of the prediction error e(k, Xo, k). Then, as k -o, 

72(k, oo k)-u2,Ck-1. 

An interesting relationship between predicting with finite and infinite past may be drawn from 
Theorem 3. Let 9(t, m, k) be the error of the best linear predictor of y, based on the finite past 
(Yt-1, Yt-2 ... Yi), and let J2(k, oo, k) be its variance. Then 

k-i 
2 X(k oo k) = 2 H(1 - ) o'(k, oo, k). 

i=1 

According to Theorem 3, this term converges hyperbolically to o2, the error variance of the best 
linear predictor of yt based on the infinite past (Yt -1, Yt-2 ) 

2 3. Influence of a single missing value 
THEOREM 4. Under the conditions of Theorem 1, the mean square prediction error of an isolated 

missing observation is asfollows: 
(a) for k >, 52(k, 1, k)- U2 = in2 2(0, 1, k); 
(b) for k > 0, if ik is a monotonically decreasing sequence then a2(k, 1, k) - a2is a monotonically 

decreasing sequence converging to zero. 

According to Theorem 4(a) there is a jump in the mean square prediction error after a missing 
value. Its magnitude is n2 U25 unless i, = 0, as is true for some ARFIMA models. For instance, in an 
ARFIMA (1, d, 1) process 71 = 0- -d, and so there is no jump in the one-step mean square predic- 
tion error if d = 0 - b. The monotonicity condition in Theorem 4(b) is shared by all fractional 
noise processes with long memory parameter d. In fact, 7.I = 1 (k-1-d)/k > O and so 7k/7k + 1 

(k + 1)/(k - d). However, for d E (-1, 1) and k > 1, (k + 1)/(k - d) > 1, proving that 7Ek/7Ek1 > 1. 
Figure 1 depicts the evolution of the mean square prediction error, a2(k, 1, k), after a single 

missing value for ARFIMA(0, d, 0) models with parameters d = 0 10, d = 0 40 and d = 049, respect- 

?- -d=O0 10 
d=040 
d=049 

o 120 

E 115 

D 1*10D___ .,_,,,_,__._ 1-05 V 

1 0 0 v . ̂ ... A__: ._w f........ . .......... .... .. ......... . .._ .......... 

5 10 15 20 
Time 

Fig. 1. Mean square prediction error for fractional noise processes. 
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ively. If we take a' = 1 it follows from i, = 0- -d that the magnitude of the jump is d2. Observe 
that, after the first peak, the mean square prediction error decays to one monotonically. 
Furthermore, the difference between the mean square prediction error and one is not noticeable 
after about six steps from the missing value. 

The results discussed in this section indicate a sharp contrast between ARMA and ARFIMA pro- 
cesses. For example, from Theorem 2, the influence of a data gap on the mean square prediction 
error vanishes at an exponential rate for ARMA models and at a hyperbolic rate for ARFIMA 
processes. Thus, the influence on the prediction errors persists longer in the latter processes. On 
the other hand, as a consequence of Theorem l(a) the forecasting error variance after the end of 
the series grows more slowly for ARFIMA than ARMA models, giving long-memory processes a clear 
advantage over short-memory processes. 

3. APPLICATION: THE NILE RIVER DATA REVISITED 

The annual minimum water levels of the Nile river measured at the Roda gorge is a well- 
known time series exhibiting long-range dependency; see for example Hosking (1984), Beran (1994, 
Ch. 1) and Hipel & McLeod (1994, Ch. 10). These measurements, available from Statlib at 
www.stat.cmu.edu, are displayed in Fig. 2(a) spanning a time period from AD 622 to AD 1921. 
Several blocks of repeated observations, i.e. consecutive years having exactly the same minimum 
water level, have been removed. Since the observations are specified by four digits, the repetitions 
are probably the result of a lack of new information. 

From AD 622 to AD 1281, the period analysed by Beran (1994), there are 48 repeated values. 
This figure rises to 344 when the full period is considered, corresponding to roughly 27% of the 
sample size of 1297 observations. The problem is especially critical after the fifteenth century, when 
blocks of up to 55 consecutive repetitions can be found. 

Following Beran (1994, p. 11), we fitted an ARFIMA(O, d, 0) model to the Nile river data and the 
maximum likelihood estimates are presented in Table 1. The full period from AD 622 to AD 1921 
was divided into two sub-periods, from AD 622 to AD 1281, which coincides with Beran's analysis, 
and from AD 1282 to AD 1921, a period in which 46% of the observations are missing. The means 
of the time series in Fig. 2(a), displayed in the third column of Table 1, are similar in the three 

(a) Data without repetitions 

14- ; 

102 
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Year 

(b) One-step predictions 

~14- 

%- 12 1 

600 800 1000 1200 1400 1600 1800 
Year 

Fig. 2. Annual minimum water levels of the Nile river (AD 622-AD 1921). 
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periods, whereas the standard deviations of the time series, shown in the fourth column, present 
small changes from period to period. 

Table 1: Nile river data. Maximum likelihood estimation of d 
and C72 

Period Missing y- 7y d td SE 

AD 622-AD 1281 7% 11 50 0 89 0 3712 1196 0 921 
AD 1282-AD 1921 46% 12 08 1 17 0 4385 14 92 1 095 
AD 622-AD 1921 27% 11 71 1 04 0 4141 18 21 0 733 

From Table 1, it can be observed that the maximum likelihood estimates of the long-memory 
parameter d in the three periods are similar. The estimate found by Beran (1994, p. 125) is 
d = 040, for the period AD 622-AD 1281 without removing the repeated values. The maximum 
likelihood estimate of d for the second and third periods with the repeated values is 0 49 in both 
cases, indicating almost nonstationary models. 

The t-statistics for d in the studied periods are highly significant. The estimated standard devi- 
ations of the noise U. are close to one in the first and second periods. However, when the full 
period is considered, this estimate drops to around 0 7. 

The influence of the data gaps on the forecasts can be analysed from the Kalman filter output. 
Figure 2(b) depicts one-step predictions. The residuals, et = Yt,- y, and the predictions' standard 
deviations are displayed in Fig. 3. The evolution of these standard deviations is explained by 
the theoretical results from ? 2. Two typical situations are shown in Fig. 4. After a single missing 
value at time t = 791, see Fig. 4(a), the residual standard deviation jumps to roughly 0 8 
cU" (1 + 7E2), and then decays to C, = 0-733 monotonically, in agreement with Theorem 4. It can 
be also observed in Fig. 4(a) that it takes approximately six steps after the missing value to reach 
the 0 733 level, analogously to the theoretical result displayed in Fig. 1 for d = 0 40. 

For a string of missing values, see Fig. 4(b), the mean square prediction error approaches the 
upper limit o2 monotonically at a hyperbolic rate O(k-026), see Theorem 2(a). Then, as new 
information is added, the error variance decays to o2 at a hyperbolic rate O(k-274) as indicated 

(a) 
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Year 

(b) 

'1-4. 

1 -0 
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Fig. 3. (a) Residuals: Yt - 9 and (b) standard deviations of one-step predictions, for the Nile 
river data. 
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(a) AD 781-AD 801 (b) AD 1529-AD 1588 
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Fig. 4: Nile river data. Evolution of one-step standard deviations (a) AD 781-AD 801 period, 
(b) AD 1529-AD 1588 period. 

by Theorem 2(b). It takes 55 missing observations for the mean square prediction error to increase 
to about one, but it takes fewer than six observations to regain the original level, U. 

Model fitting for the Nile river application has been performed using the state space formulation, 
and a Fortran program that implements this approach is available from the authors. As shown by 
this application, data irregularities may severely affect the estimation of long-memory processes, 
resulting in almost nonstationary models. 
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APPENDIX 

Proofs 
Proof of Theorem 1. Part (a) is a standard result for the t - s steps ahead error variance; see e.g. 

Beran (1994, p. 167). To prove (b) take t = k in the AR(oo) decomposition and subtract from both 
sides the best linear predictor. Then all terms vanish, except for Yk and those associated with the 
missing observations, which yields the useful identity 

k 

e(k, m, k) = ?k - Z ice(k-I, m, k). (Al) 
j=k-m+ 1 

By the orthogonality of 8k to all previous observations, 
k 

,72(k,m, k) = 72 + var { 7tje(k -j, m, k)} (A2) 
j=k-m+l1 

for m > 1. Bounding the sum in (b) and U2(j, m, k) by o 2 ends the proof. D 

Proof of Theorem 2. (a) For k < m, o2(k, m, k) - = J??Zk = j. Since J 
/i Cljdl for large j, 

2 Jk V2 C1k2d-1, for large k. (b) For k >> m, from (A2), 

m,k k v 
j= ~ z-ml{f(,m,k-E}=vrg E Zkl+zekj ,k> 
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for large k, 

k 

7C-Pnl{f2k,m, k) - 2} var { e(k -j, m, k)} 
j =k -mtt+ 1 

= var(Zk), 

where 

m -1 in- 1 

Zk = yj -E Y, YjI|YO .. * *nYmnzY-1 nY-25-* 
j=O j=O 

However, 0 < var(ZO,,) < var(Zk) < var(Zm) < oo. Therefore 

2(k, m, k)- C2 _ bm? - C2k-2d-2 (k ? i). 

Parts (c) and (d) are proved analogously, by observing that for ARMA processes i/ij C3a-j and 
7Ej C4aJ- for large j. D2 

Proof of Theorem 3. Let C be a constant which does not depend on k. Then, for large k, 

92(k, oo, k) -U2 = o2(k, oo, k) I1- 2(k k)} 

= u72(k, oo, k) I - exp {k? log(1 -i)} 

072 f1 -exp(C Z i24-Ck1l 
k{1 /1 

as required. F] 

Proof of Theorem 4. Taking m = 1 in (Al) yields (a). Part (b) follows from the monotonic behav- 
iour of 072(0, 1, r), which decreases from o72 to U2(0, 1, 00), the variance of the interpolation error 
given all observations but the missing one. D 

REFERENCES 

ANSLEY, C. F. & KOHN, R. (1983). Exact likelihood of vector autoregressive-moving average process with 
missing or aggregated data. Biometrika 70, 275-8. 

BERAN, J. (1994). Statisticsfor Long-Memory Processes. New York: Chapman and Hall. 
BLOOMIFIELD, P. (1992). Trends in global temperature. Climatic Change 21, 1-16. 
CHAN, N. H. & PALMA, W. (1998). State-space modelling of long-memory processes. Ann. Statist. 26, 719-40. 
DAHLHAUS, R. (1989). Efficient parameter estimation of self similar processes. Ann. Statist. 17, 1749-66. 
Fox, R. & TAQQU, M. S. (1986). Large sample properties of parameter estimates for strongly dependent 

stationary Gaussian time series. Ann. Statist. 14, 517-32. 
HIPEL, K. W. & MCLEOD, A. I. (1994). Time Series Modelling of Water Resources and Environmental Systems. 

Amsterdam: Elsevier. 
HOSKING, J. R. M. (1984). Modeling persistence in hydrological time series using fractional differencing. Water 

Resour. Res. 20, 1898-908. 
JONES, R. H. (1980). Maximum likelihood fitting of ARMA models to time series with missing observations. 

Technometrics 22, 389-95. 
LITTLE, R. J. A. & RUBIN, D. B. (1987). Statistical Analysis with Missing Data. New York: Wiley. 
PALMA, W. & CHAN, N. H. (1997). Estimation and forecasting of long-memory processes. J. Forecasting 

16, 395-410. 
PENZER, J. & SHEA, B. (1997). The exact likelihood of an autoregressive-moving average model with incomplete 

data. Biometrika 84, 919-28. 



972 WILFREDO PALMA AND GUIDO DEL PINO 

RAY, B. K. & TSAY, R. S. (1997). Bandwidth selection for kernel regression with long-range dependent errors. 
Biometrika 84, 791-802. 

ROBINSON, P. M. (1993). Time series with strong dependency. In Advances in Econometrics, 6th World Congress, 
Ed. C. A. Sims, pp. 47-95. Cambridge: Cambridge University Press. 

SOWELL, F. (1992). Maximum likelihood of stationary univariate fractionally integrated time series. 
J. Econometrics 53, 165-88. 

[Received July 1998. Revised May 1999] 


	Article Contents
	p. [965]
	p. 966
	p. 967
	p. 968
	p. 969
	p. 970
	p. 971
	p. 972

	Issue Table of Contents
	Biometrika, Vol. 86, No. 4 (Dec., 1999), pp. 743-974+i-viii
	Volume Information [pp. ]
	Front Matter [pp. ]
	On Dependence Estimation Using Correlated Failure Time Data from Case-Control Family Studies [pp. 743-753]
	Case-Cohort and Case-Control Analysis with Cox's Model [pp. 755-764]
	On Efficient Probability Forecasting Systems [pp. 765-784]
	Decomposable Graphical Gaussian Model Determination [pp. 785-801]
	Beyond Accept-Reject Sampling [pp. 803-813]
	A Dimension-Reduced Approach to Space-Time Kalman Filtering [pp. 815-829]
	On Extended Partially Linear Single-Index Models [pp. 831-842]
	Bias and Efficiency Loss Due to Misclassified Responses in Binary Regression [pp. 843-855]
	Reducing Sensitivity to Nuisance Parameters in Semiparametric Models: A Quasi-Score Method [pp. 857-869]
	On Prediction Intervals Based on Predictive Likelihood or Bootstrap Methods [pp. 871-880]
	High-Order Accurate Methods for Retrospective Sampling Problems [pp. 881-897]
	Partial Common Principal Component Subspaces [pp. 899-908]
	Two-Sample Quantile Tests under General Conditions [pp. 909-921]
	Miscellanea
	Influence Diagnostic in Survey Sampling: Conditional Bias [pp. 923-928]
	Saddlepoint Approximations for Distributions of Quadratic Forms in Normal Variables [pp. 929-935]
	On the Optimal Amount of Smoothing in Penalised Spline Regression [pp. 936-940]
	Data Sharpening as a Prelude to Density Estimation [pp. 941-947]
	Small-Sample Degrees of Freedom with Multiple Imputation [pp. 948-955]
	Probability Matching Priors for Non-Regular Cases [pp. 956-964]
	Statistical Analysis of Incomplete Long-Range Dependent Data [pp. 965-972]

	Amendments and Corrections
	An Extension of the Results of Asmussen and Edwards on Collapsibility in Contingency Tables [pp. 973]
	Forensic Identification with Imperfect Evidence [pp. 974]

	Back Matter [pp. ]





