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ABSTRACT
This paper develops a state space framework for the statistical analysis of a class of locally stationary processes. The
proposed Kalman filter approach provides a numerically efficient methodology for estimating and predicting locally
stationary models and allows for the handling of missing values. It provides both exact and approximate maximum
likelihood estimates. Furthermore, as suggested by the Monte Carlo simulations reported in this work, the performance
of the proposed methodology is very good, even for relatively small sample sizes. Copyright © 2011 John Wiley &
Sons, Ltd.
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INTRODUCTION

A common problem in the statistical analysis of time series is that stationarity is an assumption hard to justify
in practice. To deal with nonstationary data, a number of techniques have been proposed. For instance, differen-
tiation, trend removal and regression analysis are well-known approaches for attempting to convert nonstationary
time series into stationary ones. Other methods are based on the concept of evolutionary spectra developed by
Priestley (1965) and others. More recently, Dahlhaus (1997) introduced a general class of locally stationary (LS)
processes. In this approach, the process under study is nonstationary but with parameters slowly varying over time.
Thus, under some regularity conditions, the process can be locally approximated by stationary processes. Other
locally stationary processes have been discussed, for example by Wang et al. (2001), Cavanaugh et al. (2003) and
Last and Shumway (2008).

Local stationarity is playing a key role among the methodologies for analyzing nonstationary data (see, for exam-
ple, Dahlhaus, 2000; Jensen and Witcher, 2000; Dahlhaus and Polonik, 2006, 2009; and Palma and Olea, 2010; among
others). In this paper we propose a computationally efficient state space method for estimating, predicting and making
statistical inferences about a class of LS models. State space systems have been extensively discussed in the literature
(see, for instance, Shumway and Stoffer, 2010, for a recent overview). The state state framework proposed in this
paper allows for the statistical modeling of LS processes with short and long memory, and the handling of missing
values. Thus exact and approximate maximum likelihood estimates (MLE), one-step and multi-step predictors along
with their error bands can be obtained by means of the Kalman recursive equations.

The remainder of this article is structured as follows. The next section defines a family of LS processes, while
the third section discusses a state space framework for modeling that class of nonstationary time series. The fourth
and fifth sections assess the finite sample performance of the Kalman estimates and predictors, respectively. The
application of the proposed procedures to tree ring data is discussed in the sixth section.

LOCALLY STATIONARY PROCESSES

Following Dahlhaus (1997), a class of Gaussian LS processes can be defined by the spectral representation

Yt;T D

Z �

��

A0t;T .�/ e
i�t dB.�/ (1)

for t D 1; : : : ; T , where B.�/ is a Brownian motion on Œ��; �� and there is a positive constant K and a 2�-periodic
function AW .0; 1� � R ! C with A.u;��/ D A.u; �/ such that supt;� jA

0
t;T .�/ � A

�
t
T
; �
�
j 6 K

T
, for all T . The

transfer function A0t;T .�/ of this class of nontstationary processes changes smoothly over time so that they can be
locally approximated by stationary processes. Some examples are discussed below.
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Example 1. A family of LS processes is given by the moving average expansion

Yt;T D �

�
t

T

� 1X
jD0

 j

�
t

T

�
"t�j (2)

t D 1; : : : ; T , where ¹"tº is a zero-mean and unit variance Gaussian white noise and ¹ j .u/º are coefficients satisfy-
ing

P1
jD0  j .u/

2 <1 for all u 2 Œ0; 1�. This model will be denoted LSMA(1) hereafter. The time-varying spectral

density of (2) is f� .u; �/ D �2.u/j
P1
jD0  j .u/e

i�j j2, for u 2 Œ0; 1� and � 2 Œ��; ��. Let K be a positive constant
that may change from line to line. For simplicity, if j j .u/j 6 K exp.�aj / for j > 1 and u 2 Œ0; 1� with a a positive
constant, model (2) will be called a short-memory process. On the other hand, if j j .u/j 6 Kj d�1 for u 2 Œ0; 1� and
some d 2 .0; 1=2/, model (2) will be called a long-memory process. Another characterization is based on the spectral
density. It is said that an LS process has short memory if its spectral density is bounded at � D 0 for u 2 Œ0; 1�. On
the other hand, the process has long memory if its spectral density is unbounded near the origin for u 2 Œ0; 1�.

Example 2. A particular case of model (2) is the LSMA.1/ process with coefficients  j .u/ D �.u/j . The
covariance structure for this model is given by
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for s > t and its spectral density is f� .u; �/ D �.u/2j1 � �.u/ei�j�2. As a consequence, for j�.u/j < 1, u 2 Œ0; 1�,
f� .u; 0/ D �.u/

2j1��.u/j�2 <1, indicating that this LSMA model has short memory. A similar conclusion holds
for the LSMA.q/ model defined by Yt;T D �

�
t
T

�Pq
jD0  j

�
t
T

�
"t�j .

Example 3. Consider the LS autoregressive process LSAR(p) defined by equation (4.1) of Dahlhaus (1997), Yt;T DPp
jD1 aj .

t
T
/Yt�j;T C "t , for T D 1; : : : ; T . The spectral density of the limiting process is f� .u; �/ D �.u/2j1 �Pp

jD1 aj .u/e
i�j j�2. This process satisfies definition (1). In this case, the spectral density is bounded at the origin

under some regularity conditions on the roots of the polynomial a.B/ D 1 �
Pp
jD1 ajB

j . Thus these LSAR(p)
processes have short memory.

Example 4. A generalization of the fractional noise model is the LS fractional noise process (LSFN) with coeffi-
cients  j .u/ D

�ŒjCd.u/�
�.jC1/�Œd.u/�

, where �.�/ is the Gamma function and d.�/ is a smoothly time-varying long-memory
parameter. Observe that according to Lemma A.1 of Palma (2010), the covariances of a LSFN process are
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for s; t D 1; : : : ; T , s > t and the spectral density of this process is given by

f� .u; �/ D
�2.u/

2�

�
2 sin

�

2

��2d� .u/

for � 2 Œ��; ��. Thus f� .u; �/ �
�2.u/
2�
j�j�2d.u/, for j�j ! 0. Consequently, f� .u; �/ has a pole at the origin

indicating the long-memory behavior of the LSFN process.

STATE SPACE REPRESENTATIONS

Consider the nonstationary state space system

XtC1;T D Ft;TXt;T C Vt;T ;
Yt;T D Gt;TXt;T CWt;T

(3)

where Xt;T is a state vector, Ft;T is a state transition operator, Vt is a state noise with variance Qt;T , Yt;T is the
observation, Gt;T is observation operator and Wt is a observation noise with variance Rt;T . The LS process (2) can
be represented by a state space system (3) by generalizing the infinite-dimensional equations given on page 22 of
Hannan and Deistler (1988) to the nonstationary case. The following lemma provides a specific representation of (2).
Proofs of the results presented in this paper are straightforward and available from the authors.

Copyright © 2011 John Wiley & Sons, Ltd J. Forecast. 32, 86–96 (2013)



88 W. Palma, R. Olea and G. Ferreira

Lemma 1. The process (2) can be represented by the following infinite-dimensional state space system:

XtC1;T D

�
0

I1

	
Xt;T C



1 0 0 � � �

�0
"tC1;

Yt;T D �. t
T
/


1  1.

t
T
/  2.

t
T
/  3.

t
T
/ � � �

�
Xt;T

(4)

for t D 1; : : : ; T , var.Xt;T / D I1, where I1 D diag¹1; 1; : : : º, Rt;T D 0, Qt;T D .qij / with qij D 1 if i D j D 1
and qij D 0 otherwise.

Note that the state space representation provided by Lemma 1 may not be minimal in some cases. For instance, a
one-dimensional state space representation for the LSAR(1) model studied in Example 3 is given by (3) with Yt;T D
Xt;T , Ft;T D a

�
tC1
T

�
and Vt;T D "t . More generally, for LSAR(p) processes, the state space is p-dimensional:
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Xt;T C "tC1; Yt;T D Œ1 0 0 � � � � Xt;T

where Ir denotes the r � r identity matrix hereafter. For computational efficiency it is sometimes more appropriate
to consider the truncated process
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for t D 1; : : : ; T and some positive integer m. Naturally, (5) is an exact expansion for an LSMA.p/ with p 6 m

since in that case  j .u/ D 0 for j > p. A finite-dimensional state state system for (5) is given by
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(6)

for t D 1; : : : ; T . The following result establishes the asymptotic magnitude of the truncation error when
approximating (2) by (5).

Lemma 2. Let rmD var
hP1

jDmC1  j .u/"t�j

i
be the variance of the truncation error for approximating ¹Yt;T º by

the finite moving average expansion (5). Then,

rm �

²
O.e�am/ for a short-memory process;
O.m2d�1/ for a long-memory process

for large m, where a > 0 and d D supud.u/ < 1=2.

Estimation
Based on the state space representation (4) of Yt;T , the Kalman filter equations can be used for estimating model
parameters, state vectors, future observations and missing values. Let	t;T D var.Yt;T �bY t;T / be the prediction error
variance and let 
t;T D var.Xt;T � bX t;T / D �

!i;j .t; T /
�

be the state prediction error variance–covariance matrix.
The Kalman recursive equations are given by the following result.

Lemma 3. Given the initial conditions Y0;T D .0; 0; : : : /, bX1 D E.X1/ D .0; 0; : : : / and 
1;T D E.X1X 01/ D
diag¹1; 1; : : : º, the updating Kalman equations are
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�
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�
t
T

�
;

!tC1;T .i; j / D !t;T .i C 1; j C 1/C qij � ı.t/‚t;T .i/‚t;T .j /=	t;T ;bY t;T D �
�
t
T

�P1
jD1  j�1

�
t
T

� bX t;T .j /;bX tC1;T .i/ D bX t;T .i � 1/C‚t;T .i/.Yt;T � bY t;T /=	t;T
(7)

where ı.t/ D 1 if observation Yt;T is available and ı.t/ D 0 otherwise.

Let � be the model parameter, then the log-likelihood function (up to a constant) can be readily obtained from (7),

L.�/ D
PT
tD1 log	t;T C

PT
tD1

.Yt;T�bY t;T /2
�t;T

. Hence the exact MLE provided by the Kalman equations (7) is given
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byb� D arg max�2‚ L.�/, where ‚ is a parameter space. Note that the Kalman equations (7) can be applied directly
to the general state space representation (3) or to the truncated representation (6), yielding in this case an approximate
MLE.

Prediction
Let bY nCj;T D EŒYnCj;T jYn;T ; Yn�1;T Yn�2;T ; : : : ; Y1;T � be the j -step in-sample predictor based on the finite past for
1 6 nC j 6 T . These forecasts are obtained from the Kalman recursive equations. Thus the best linear mean square
predictors, bY nCj;T are given by

bY nCj;T D GnCj;T bXnCj (8)

for j D 1; : : : ; T � n, where GnCj;T D Œ1;  1.
nCj
T
/;  2.

nCj
T
/; : : :� with 
nCj;T D F j
n;TF 0j C

Pj�1

kD0
F kQF 0k

and	nCj;T D GnCj;T
nCj;TG0nCj;T , for j D 1; : : : ; T � n. On the other hand, out-of-sample predictors bY TCh for
h > 0 can be obtained from the Kalman filter equations (7) by redefining the sample size T � D T C h and treating
observations T C 1; : : : ; T � as missing data. Similar formulas give the predictors and their error variances for the
truncated representation (6).

SIMULATION STUDIES

This section assesses the finite sample performance of the proposed state space estimation methodology, for both
complete and incomplete data. All simulation results are based on 1000 replications and the locations of the missing
values have been randomly selected. We start assessing the method for a short-memory LS process and then we
analyze the long-memory LS case.

Short-memory case
As an illustration, consider the LSMA.1/ model described by (2) with

 j .u/ D �.u/
j ; �. u/ D ˛0 C ˛1 u; �. u/ D ˇ0 C ˇ1 u (9)

with j�.u/j < 1 and �.u/ > 0 for u 2 Œ0; 1�. Denote the parameter vector by ˛ D .˛0; ˛1/ for �.�/ and ˇ D .ˇ0; ˇ1/
for the noise scale �.�/. The simulated processes are generated by using the innovation algorithm (see Brockwell and
Davis, 1991). The optimal theoretical standard deviations (SD) are based on the formulas given by Theorem 3.1 of
Dahlhaus (2000) for the MLE of short-memory LS models:

�.˛/ij D

Z 1

0

uiCj�2

1 � Œ�. u/�2
du; �.ˇ/ij D 2

Z 1

0

uiCj�2

�2.u/
du (10)

for i; j D 1; 2. Furthermore, b̨ and b̌ are asymptotically independent. Table I displays the simulation results from
the Kalman method for two truncation levels, m D 40; 80. The number of missing values are 10% and 20%, which

Table I. Estimation of model (9) with .˛0; ˛1; ˇ0; ˇ1/ D .�0:3; 0:8; 0:5; 0:5/

m D 40 m D 80

% NA 0% 10% 20% 0% 10% 20%

b̨0 �0.301 �0.303 �0.299 �0.304 �0.303 �0.300b̨1 0.802 0.803 0.794 0.804 0.804 0.793b̌
0 0.506 0.481 0.453 0.506 0.481 0.454b̌
1 0.488 0.460 0.437 0.488 0.460 0.433
�.b̨0/ 0.061 0.064 0.068 0.061 0.064 0.068
�.b̨1/ 0.102 0.108 0.114 0.102 0.108 0.114

�.b̌0/ 0.027 0.028 0.030 0.027 0.028 0.030

�.b̌1/ 0.056 0.059 0.063 0.056 0.059 0.063b�.b̨0/ 0.062 0.069 0.075 0.061 0.069 0.075b�.b̨1/ 0.106 0.117 0.124 0.103 0.114 0.127b�.b̌0/ 0.028 0.029 0.030 0.026 0.029 0.031b�.b̌1/ 0.058 0.059 0.061 0.056 0.060 0.062
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have been randomly selected for each simulation. From this table, note that the estimated parameters and SD are
close to their theoretical counterparts, especially as the truncation levelm increases. As expected, the precision of the
estimates deteriorates as the percentage of missing data increases.

Long-memory case
Consider the LSFN defined in Example 4 with long-memory and scale parameters given by

d. u/ D ˛0 C ˛1 f .u/; �. u/ D ˇ0 C ˇ1 u (11)

respectively, where f is a known function, 0 < d.u/ < 1=2 and �.u/ > 0 for u 2 Œ0; 1�. We consider three models,
with combinations of linear and harmonic specifications of f , i.e. f .u/ D u and f .u/ D cos.!u/, respectively.
Tables II–IV show the results from these simulations. The optimal SDs for the linear case f .u/ D u are based on the
matrix � provided by Theorem 2.2 of Palma and Olea (2010), �.˛/ij D �2Œ6.i C j � 1/��1, i; j D 1; 2, and �.ˇ/
is given by (10). On the other hand, for the harmonic case f .u/ D cos.!u/ the optimal SD of b̨ are based on the
following matrix given by Palma and Olea (2010):

�.˛/ij D
�2

12

�
sin.�i � �j /

�i � �j
C

sin.�i C �j /

�i C �j

	
; i; j D 1; 2 (12)

where .�1; �2/ D .0; 2�/ and the SDs of b̌ are based on the matrix �.ˇ/ given by (10).

Table II. Estimation of model (11) with .˛0; ˛1; ˇ0; ˇ1; f / D .0:2; 0:25; 0:5; 0:5; u/

m D 40 m D 80

% NA 0% 10% 20% 0% 10% 20%

b̨0 0.209 0.213 0.213 0.204 0.208 0.209b̨1 0.248 0.240 0.243 0.249 0.244 0.243b̌
0 0.508 0.482 0.456 0.507 0.482 0.455b̌
1 0.489 0.465 0.439 0.490 0.464 0.438
�.b̨0/ 0.049 0.051 0.055 0.049 0.051 0.055
�.b̨1/ 0.084 0.089 0.094 0.084 0.089 0.094

�.b̌0/ 0.027 0.028 0.030 0.027 0.028 0.030

�.b̌1/ 0.056 0.059 0.063 0.056 0.059 0.063b�.b̨0/ 0.043 0.045 0.048 0.045 0.049 0.049b�.b̨1/ 0.066 0.072 0.075 0.071 0.074 0.075b�.b̌0/ 0.026 0.027 0.028 0.025 0.028 0.028b�.b̌1/ 0.053 0.059 0.059 0.051 0.056 0.056

Table III. Estimation of model (11) with .˛0; ˛1; ˇ0; ˇ1; f / D .0:35; 0:1; 0; 1; cos.2�u//

m D 40 m D 80

% NA 0% 10% 20% 0% 10% 20%

b̨0 0.357 0.360 0.345 0.354 0.357 0.347b̨1 0.106 0.105 0.120 0.103 0.104 0.117b̌
0 0.953 0.844 0.902 0.966 0.859 0.911b̌
1 0.037 0.041 0.039 0.036 0.029 0.037
�.b̨0/ 0.024 0.026 0.027 0.024 0.026 0.027
�.b̨1/ 0.034 0.036 0.039 0.034 0.036 0.039

�.b̌0/ 0.044 0.047 0.049 0.044 0.047 0.049

�.b̌1/ 0.077 0.081 0.086 0.077 0.081 0.086b�.b̨0/ 0.024 0.033 0.034 0.024 0.028 0.029b�.b̨1/ 0.027 0.035 0.033 0.032 0.035 0.037b�.b̌0/ 0.053 0.066 0.093 0.046 0.052 0.054b�.b̌1/ 0.081 0.092 0.092 0.079 0.083 0.091
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Table IV. Estimation of model (11), .˛0; ˛1; ˇ0; ˇ1; f / D .0:25; 0:2; 1:5; 1 � 0; 5; cos.2�u//

m D 40 m D 80

% NA 0% 10% 20% 0% 10% 20%

b̨0 0.253 0.254 0.253 0.252 0.251 0.251b̨1 0.207 0.207 0.209 0.203 0.207 0.210b̌
0 1.427 1.359 1.290 1.457 1.449 1.303b̌
1 �0.493 �0.394 �0.379 �0.468 �0.452 �0.389
�.b̨0/ 0.024 0.026 0.027 0.024 0.026 0.027
�.b̨1/ 0.034 0.036 0.039 0.034 0.036 0.039

�.b̌0/ 0.060 0.063 0.067 0.060 0.063 0.067

�.b̌1/ 0.095 0.100 0.106 0.095 0.100 0.106b�.b̨0/ 0.025 0.028 0.029 0.025 0.027 0.030b�.b̨1/ 0.033 0.034 0.037 0.033 0.035 0.038b�.b̌0/ 0.071 0.073 0.081 0.063 0.065 0.071b�.b̌1/ 0.099 0.121 0.135 0.097 0.101 0.118

From Tables II–IV, observe that the estimates are close to their true values for the two truncation levels m. On the
other hand, the empirical SDs get closer the their optimal theoretical counterparts as m increases. In particular, for
m D 80 the empirical and the theoretical SDs are very similar for both complete and incomplete data.

SIMULATION STUDIES: PREDICTION

The calculation and finite sample performance of one-step and multi-step predictors of short- and long-memory LS
processes is illustrated in this section.

Short-memory case
Consider the time-varying moving average LSMA process discussed in Example 2. We calculate the best linear
predictor, bY 974Cj;T for j D 1; : : : ; 50, given by (8) with sample size T D 1; 024 and time-varying �.u/ parameter
and scale factor �.u/ given by specification (9) with .˛0; ˛1; ˇ0; ˇ1/ D .�0:4; 0:8; 0:5; 0:5/. The model is estimated
using truncation m D 80 with observations t D 1; : : : ; 974 and values t D 975; : : : ; 1024 are left for out-of-sample
forecasting. Figure 1 shows the data (light line for the first 974 observations and dotted line for the last 50 values) and
predictors (heavy line), along 95% prediction bands for the out-of-sample forecasts.

The evolution of the prediction error SD is depicted in Figure 2. The broken line represents the SD of the process
�.Yt;T / D �.t; t/

1
2 D �.t=T /Œ1��.t=T /2��

1
2 with �.u/ D 0:8u� 0:4, the dotted line corresponds to the noise SD,

�.t=T / D 0:5.1 C u/, and the heavy line denotes the estimated SD of the prediction error 	
1
2

t;T . From this figure,

notice that �.Y512;1024/ D �.0:5/ and that 	
1
2

t;T gets closer to its upper limit �.Yt;T / for t > 974 since the last 50
observations are missing, consequently no new information is available to improve the forecasts. Observe that, by
definition, �2.t=T / 6 	t;T 6 �2.Yt;T / for t D 1; : : : ; T .

Time
0 200 400 600 800 1000

−
3

−
2

−
1

0
1

2

Figure 1. Simulated LSMA process: multi-step out-of-sample forecasts of the last 50 observations and 95% prediction bands
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Time

S
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Figure 2. Prediction of a LSMA model. Broken line, standard deviation of Yt;T ; dotted line, SD of the noise �.t=T /; heavy line,

empirical prediction error SD, 	
1
2

t;T

Long-memory case
We illustrate this case by considering the LSFN model with time-varying long-memory parameter d.u/ and scale
factor �.u/ given by specification (11) with ˛0 D 0:15, ˛1 D 0:25, f .u/ D u, ˇ0 D 1, ˇ1 D �0:7 and sample size
T D 1024. As in the previous case, the Kalman recursive equations allow for the prediction of future values bY nCj;T
with j D 1; : : : ; 50 and n D 974, based on the model estimated with observations Y1; : : : ; Y974 and truncation
m D 80.

Figure 3 displays a simulated LSFN process with model parameters specified above. The series is represented by
the light line for t D 1; : : : ; 974 and by the dotted line for the last 50 values. The heavy line represents the one-step
predictors for t D 1; : : : ; 974 and j -step predictors bY 974Cj for j D 1; : : : ; 50. In addition, 95% prediction bands are

shown for the last 50 values. Furthermore, Figure 4 shows the evolution of the empirical prediction error SD, 	1=2t;T ,
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Figure 3. Simulated LSFN process: multi-step out-of-sample forecasts of the last 50 observations predicted and 95% prediction
bands
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Figure 4. Prediction of an LSFN model. Broken line, SD of Yt;T ; dotted line, SD of the noise �.u/; heavy line, empirical

prediction error SD, 	
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represented by the heavy line. These SD are based on the multi-step prediction error variance discussed above for
a truncated state space representation with m D 80. The broken line represents the evolution of the theoretical SD
of Yt;T , �.Yt;T /. Note that the broken line is an upper limit for the prediction error SD. In addition, the dotted line

corresponds to the theoretical noise SD, �.t=T /. Observe the increase of 	1=2t;T at the end of the series due to the
missing data.

Estimation of missing values can be readily carried out by means of the Kalman methodology. As an illustration,
consider a simulated LSFN process of length T D 512 with two blocks of 50 observations each, removed from the
sample. These blocks are located at tD201; : : : ; 250 and t D 401; : : : ; 450, respectively. The model is described by
(11) with ˛0 D 0:15, ˛1 D 0:25, f .u/ D u, ˇ0 D 0 and ˇ1 D 1. Figure 5 shows the observations for t D 1; : : : ; 512,
along with the forecasts bY 200Cj bY 400Cj for j D 1; : : : ; 50 and their respective 95% prediction bands. These multi-
step-ahead predictors (heavy line) are based on the fitted model with a truncated state space representation ofm D 80.
The true values of the series are depicted by the light line for the available data and by the dotted line for the data
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Figure 5. Prediction of an LSFN model: multi-step forecasts of two blocks of 50 missing values and 95% prediction bands
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Figure 6. Prediction of LSFN model. Broken line, SD of Yt;T ; dotted line, SD of the noise �.u/; heavy line, empirical prediction

error SD, 	
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Figure 7. Tree ring data
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gaps. In Figure 6, the broken line represents the evolution of �.Yt;T /. The heavy line corresponds to the empirical

error prediction SD, 	1=2t;T , in the presence of data gaps for t D 201 � 250 and t D 401 � 450, while the dotted line
represents the noise SD, �.u/ D 1. Notice that the prediction error SD increases right after the beginning of each
data gap and it decays to �.u/ D 1 as new observations become available.

DATA APPLICATION

This section discusses the application of the Kalman estimation and prediction techniques developed above to the
analysis of a time series consisting of pine tree ring measurements at Nevada, from AD 286 to AD 1985. The
data, reported by D. A. Graybill and available at the National Climatic Data Center, are displayed in Figure 7.
This type of time series is often used as proxies of temperature and precipitation conditions in paleoclimatology
(cf. Tan et al, 2003).

The sample autocorrelation function (ACF) of the data, displayed in Figure 8(a), shows significant autocorrelations
at large lags. The corresponding variance plot is shown in Figure 8(b). In a variance plot, the broken line represents
the expected behavior of the variance of the sample mean of a block of k observations for a short-memory process.
On the other hand, the heavy line represents the expected behavior of the variance for a long-memory process
(cf. Section 4.5.3 of Palma, 2007). From both panels, this series seems to exhibit long-range dependence.
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Figure 8. Tree ring data: (a) sample ACF; (b) variance plot
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Figure 9. Tree ring data. Sample ACF: (a) observations 1–400;(b) observations 651–1250; (c) observations 1301–1700
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Nevertheless, a closer look at the empirical ACF of the data reveals that the degree of persistence seems to vary over
time; see Figure 9, where the full sample is divided into three segments: observations 1–400, 651–1050 and 1301–
1700, respectively. Figure 9(a–c) shows the empirical ACF for these three periods, providing evidence of possible
changes in the degree of dependence.

To gain some insight about the shape of the time-varying long-memory function d.�/ and the noise SD �.�/, the
series is divided into several windows. Within each window, the long-memory parameter and scale are estimated with
a stationary FN.d/ process. In this case, each window has 500 observations with shift 120. For instance, the first
window is Y1;T ; : : : ; Y501;T , the second is Y121;T ; : : : ; Y620;T and so on.

Figure 10 shows these heuristic estimates represented by dots. Since these rough estimates suggest a linear behavior
of d.u/ and �.u/, a model specified by (11) with f .u/ D u is considered. The state space estimates are also plotted
in Figure 10. In this figure, the dotted line represents the parameter estimates of d and � for the stationary case, while
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Figure 10. State space estimation of d.u/ and �.u/ (heavy line), heuristic estimates (dots) and estimates of d and � under a
stationary fractional noise model (broken line)

Table V. Parameters estimated with a truncated m D 50

Parameter Estimate SD t -value

˛0 0.4900 0.0378 12.9630
˛1 �0.2742 0.0655 �4.1862
ˇ0 0.2123 0.0077 27.5714
ˇ1 0.0566 0.0143 3.9580
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Figure 11. Tree ring data: residual analysis: (a) standardized residuals from the fitted model; (b) sample ACF; (c) Ljung–Box tests
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the heavy line indicates the time-varying Kalman estimates of d.u/ and �.u/, using truncationm D 80, and the lineal
specification (11).

Table V reports the Kalman estimates. Note that, according to the fourth column of this table, the parameters
are statistically significant at the 5% level. Higher-order polynomials were also fitted to d.u/ and �.u/ but their
coefficients were not statistically significant at that level.

A nice feature of the Kalman recursions (7) is that they directly provide the residuals of the model, et D

Yt;T � bY t;T , along with their SD, 	
1
2

t;T . Figure 11 shows three panels exploring the structure of the standardized

residuals rt D et	
� 12
t;T . Panel (a) displays the standardized residuals from the fitted LSFN model. Panel (b) shows the

sample ACF, and panel (c) exhibits the Ljung–Box whiteness tests. From panel (b), it seems that there are no signifi-
cant autocorrelations in the residuals. This conclusion is formally supported by the Ljung–Box tests, considering up to
K D 12 (see panel (c)). This graph indicates that the white noise hypothesis is not rejected at the 5% level
of significance.
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