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Fitting non-Gaussian persistent data
Wilfredo Palmaa∗† and Mauricio Zevallosb

This paper discusses a new methodology for modeling non-Gaussian time series with long-range dependence. The class of models
proposed admits continuous or discrete data and considers the conditional variance as a function of the conditional mean. These
types of models are motivated by empirical properties exhibited by some time series. The proposed methodology is illustrated with
the analysis of two real-life persistent time series. The first application is concerned with the modeling of stock market daily trading
volumes, whereas the second application consists of a study of mineral deposit measurements. Copyright © 2010 John Wiley & Sons,
Ltd.
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1. Introduction

Long-memory data arise in many fields such as finance, economics, politics, geophysics, hydrology, among many others.
These types of time series are characterized by a sample autocorrelation function with hyperbolic decay and significant auto-
correlations even at large lags. Most of the literature on modeling long-memory is concerned with the Gaussian processes.
For a recent review see, for example, Palma [1] and references therein.

Nevertheless, many empirical studies have shown the presence of time series exhibiting long-range dependence and non-
Gaussianity. For example, persistence has been observed in stock market daily trading volumes, see for example Lobato and
Velasco [2] and references therein. On the other hand, there are several studies of geophysical data exhibiting long-range
dependence, see for instance Dmowska and Saltzman [3] and Shumway and Stoffer [4].

In those studies, the authors use well-known Gaussian ARFIMA models, but they do not use potentially more appropriate
specific distributions in the case, for example, of trading volumes or geological data. As far as we know, one of the few works
dealing with non-Gaussian long-range dependent time series is provided by Brockwell [5]. That paper models long-memory
in the observed data by means of a latent long-range-dependent process, all this within a generalized linear model (GLM)
framework where the estimation is carried out via the Markov Chain Monte Carlo (MCMC) methods.

Unlike the previous studies of trading volume and geological data mentioned above, this paper proposes a statistical
framework that allows the choice of a specific data distribution conditional on their past. For example, in the analysis of
the IBM daily trading volumes we use a Poisson distribution and for the geological data we use a Gamma distribution, as
described in Section 5. On the other hand, this paper provides an alternative approach to Brockwell [5]. In our setting, we
propose a long-memory time series model in which the distribution of the observations is specified conditionally on their
past. One benefit of this approach is that since there is no latent process, the likelihood function of the model can be directly
computed from the data.

This paper is organized as follows. Section 2 describes the data sets studied in this work. In Section 3, a family of
models with conditional mean, conditional heteroscedasticity and long-memory is proposed and some of its properties are
established. Section 4 deals with the estimation, diagnostics, model building and prediction of the proposed model. This
methodology is applied to the analysis of a discrete and a continuous time series data in Section 5 and final remarks are
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given in Section 6. The proofs of the results presented in this paper are given in the technical appendix at the end of the
paper.

2. The data

Two time series exhibiting non-Gaussianity and long-memory are analyzed in this paper. The first data set consists of a time
series of counts corresponding to daily trading volume of IBM stocks. These data have been already analyzed in several
studies, see, for example, Lobato and Velasco [2] and the references therein, but by taking a logarithmic transformation of
the trading volume. See also Andersen [6] for another modeling approach of these data. Here we deal directly with the series
of counts. The second series discussed in this work corresponds to glacial varves, which are sedimentary deposits of layers
of sand and silt deposited yearly during the spring melting seasons.

2.1. Stock market trading volume data

The data analyzed in this work correspond to daily trading volume of IBM stock for the period 2 January 1986–31 December
1993; see Figure 1. We use this period to illustrate the proposed methodology as the analysis is simplified here by not having
to explicitly model complex long-term trends in the data. Furthermore, unlike most of the previous studies, we will model
this time series as counts, avoiding the log-transformation of the original data to achieve normality. The original series,
displayed in Figure 1, exhibits several peaks whereas the histogram, see the left panel of Figure 2, indicates the asymmetry
of the distribution. In addition, the autocorrelation function shown on the right panel of Figure 2 indicates the persistence
of this series.

2.2. Sedimentary deposits data

Figure 3 displays the thicknesses of the yearly varves at one location in Massachusetts for the period 11,833–11,200 BC,
see Shumway and Stoffer [4] for further details. This data set is posted at www.stat.pitt.edu/∼stoffer/tsa.html. Several peaks
are observed in the time series plot of Figure 3. In addition, the histogram of the data, shown on the left panel of Figure 4,
reveals that the distribution is very asymmetric. The evidence of long-memory behavior can be obtained from the sample
autocorrelation function displayed on the right panel of Figure 4.

The two time series of the previous examples seem to display non-Gaussian distribution and long-range dependence. A
family of models that can capture these features is proposed in the next section.
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Figure 1. IBM daily trading volume data, 1986–1993.
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Figure 2. IBM daily trading volume data: histogram (left panel) and sample autocorrelation function (right panel).
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Figure 4. Varve glacial data: histogram (left panel) and sample autocorrelation function (right panel).

3. Methodology

In order to analyze the time series data presented in the previous section, we introduce next a class of conditional long-
memory models (CLMs). In addition, a number of important statistical properties are derived and some specific models are
discussed in detail.

Copyright © 2010 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2011, 27 23–36
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3.1. Model

Let G(�,�) be a distribution corresponding to a discrete or continuous nonnegative random variable with both finite mean
� and variance �. Let g be a positive function, � be a constant and {� j } j�0 be an absolutely summable sequence of real
numbers, that is

∑∞
j=0 |� j |<∞ such that �0 =1 and � j ≈C j−d−1 for large positive j and some d< 1

2 . The coefficient d is

the so-called long-memory parameter and it is related to the self-similar Hurst parameter, H , by the formula d = H − 1
2 . A

conditional long-memory process {yt } with values in Y is defined as

yt |Ft−1 ∼ G(�t ,g(�t )), (1)

�t = �
∞∑
j=0

� j −
∞∑
j=1

� j yt− j , (2)

where Ft is the �-field generated by {yt , yt−1, . . .}, the information up to instant t . In addition, the conditional distribution
function, G, may depend on other parameters besides � j and �. These parameters will be denoted by the vector �. In (1),
symbol ∼ denotes that, conditional on the information Ft−1, yt has distribution G with variance Var[yt |Ft−1]=g(�t ),
which is a function of the conditional mean E[yt |Ft−1]=�t .

Observe that there are a number of time series methodologies for handling non-Gaussian long-memory data, including the
approaches proposed by Stanislavky et al. [7], Samorodnitsky and Taqqu [8] and Chechkin and Gonchar [9], among others.
For example, the ARFIMA model described in Equations (2)–(3) of Stanislavky et al. [7] is represented by a linear Wold
expansion where the noise can have a non-Gaussian distribution. This formulation is very helpful for handling, for example,
processes with infinite variance. A similar approach is considered in the self-similar processes discussed by Samorodnitsky
and Taqqu [8]. However, it seems to be hard with this formulation to handle, for example, positive observations or count data.
The approach taken in our paper simplifies this issue since we specify explicitly the conditional distribution of the data given
a data-driven parameter. In Chechkin and Gonchar [9] paper, the authors consider a persistent Levy process that extends the
Fractional Gaussian Noise model to other distributions. Similar to the approach by Stanislavky et al. [7], handling positive
or count data may be difficult with this technique since the process modeled in this context comes from the increments of
the Levy motion.

Models (1)–(2) can be written in different ways. For instance, if we define the sequence εt = yt −E[yt |Ft−1]= yt −�t
then E(εt )=0 and, as shown in the next lemma, if E[g(�t )] is finite and constant, then {εt } is an innovation process, that is
a zero-mean, uncorrelated sequence with finite constant variance.

Lemma 1
Consider the model described by (1)–(2). Then,

(a) Var(εt )=E[g(�t )].
(b) cov(εt ,εs)=0, for all t �=s.
(c) If Var(εt ) is a finite constant, then {εt } is an innovation process.

Based on {εt }, we can write the model as follows: replacing �t = yt −εt in (2) and since �0 =1, we obtain

�(B)(yt −�)=εt , (3)

where �(B)=∑∞
j=0 � j B j , B is the backshift operator such that Byt = yt−1. This representation is familiar in time series

analysis with independent perturbations εt . A widely used model for capturing both short- and long-range dependencies, is
the ARFIMA(p,d,q) model proposed by Granger and Joyeux [10] and Hosking [11]. In this case,

�(B)=�(B)(1− B)d�(B)−1, (4)

where �(B)=1−	1 B −·· ·−	p B p, �(B)=1−
1 B −·· ·−
q Bq , d is the fractional differencing parameter and
(1− B)d =∑∞

j=0 b j B j with b0 =1 and b j =�( j −d)/{�( j +1)�(−d)} for j�1.
Thus, model (1)–(2) with parametrization (4) satisfies

�(B)(1− B)d (yt −�) = �(B)εt , (5)

εt |Ft−1 ∼ (0,g(�t )). (6)

To ensure the causality and the invertibility of the filter (4), it is assumed that the polynomials �(B) and �(B) have no
common roots. These are all located outside the unit circle, and |d|< 1

2 .

26
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Note that in (5), although the sequence {εt } is not a strict white noise (independent), it is uncorrelated under some
conditions, cf. Lemma 1. Therefore, the process {yt } and the ARFIMA model with independent input error sequence {εt }
have the same autocorrelation function, as stated in Theorem 2. For convenience, a conditional long-memory process (1)–(2)
with an ARFIMA(p,d,q) filter will be referred to as CLM–ARFIMA process. When �(B)=1−	B in (3), we obtain the
model proposed by Grunwald et al. [12].

3.2. Properties

The following theorems, which are proved in the technical appendix, establish some properties of the conditional long-
memory process defined in Section 3.1. These results are related to second-order stationarity, named simply as stationarity,
and correlation structure of the process {yt }. In what follows, we will focus on processes {yt }⊂R+. This corresponds to a
technical condition required for an application of the monotone convergence theorem to show the mean-stationarity of the
process, see proof of Theorem 1.

Theorem 1
Consider a process {yt }⊂R+ defined by (5)–(6) where � j�0 for j�1. Then, the process {yt , t ∈Z} is mean-stationary for
any positive function g.

Theorem 2
Consider the CLM (5)–(6) with parametrization (4) and assume that the roots of �(z)=0 lie outside the unit circle. Then,
under conditions of Theorem 1,

(a) If g is a positive concave function, then {εt } is an innovation sequence.
(b) Assume that Var(εt ) is a finite constant. If d<0.5,

Var(yt )=E{g(�t )}
∞∑
j=0

�2
j ,

where �(B)=�(B)−1(1− B)−d�(B)=∑∞
j=0 � j B j .

(c) Under conditions of part (b), the CLM–ARFIMA(p,d,q) process and the standard ARFIMA(p,d,q) process have
the same autocorrelation function.

(d) Under conditions of parts (a) and (b), the process {yt , t ∈Z} is stationary.

In terms of modeling the data discussed in Section 2, Theorem 2 can be used as follows: specify g as a positive concave
function and then, by part (a) {εt } is an innovation sequence. Therefore, by part (c), both CLM-ARFIMA and standard
ARFIMA processes share the same correlation structure. Thus, the identification stage for both types of time series models
are similar.

3.3. Examples

The setup (5)–(6) is general enough to allow for modeling data with diverse distributions. For instance, the conditional
distribution G may belong to the exponential family with support in R+ such as Binomial, Gamma or Poisson distributions.
In what follows, we discuss briefly these examples corresponding to continuous and discrete conditional distributions G,
respectively.

(a) Conditional Poisson: Define the model as yt |Ft−1 ∼Poi(�t ) where Y ={0,1,2, . . .}, � is null and g(�t )=�t . In this
case, E{g(�t )}=E[�t ]=�.

(b) Conditional Binomial: Consider the model yt |Ft−1 ∼Bin(m, pt ) where n is fixed,Y={0,1,2, . . .}, � is null, �t =mpt
and g(�t )=�t (m−�t )/m. In this case, g is concave and bounded by m/4.

(c) Conditional Gamma: Let yt |Ft−1 ∼Gamma(�t/�,�), with �=�>0,Y= (0,∞) and g(�t )=��t . For this distribution
we have E{g(�t )}=�E[�t ].

As stated in Theorems 1 and 2, the correlation structure depends on both, the parametrization and the function g. Two
parameterizations that satisfy conditions of Theorem 1 are

CLM–ARFIMA(0,d,0) with d ∈ (0, 1
2 ). Here, �(B)= (1− B)d is such that

∑∞
j=0 � j =0 and � j�0, ∀ j�1.

CLM–ARFIMA(1,d,0). Here � j =� j−1{(1−	)−(1+d)/j}/{1−	( j −1)/( j −2−d)} for j�1. In this case, it can be
shown that � j�0 for j =1,2, . . . , if d ∈ (0, 1

2 ) and −d�	�(1−d)/2.

Copyright © 2010 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2011, 27 23–36
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In addition, note that in the previous examples (a),(b) and (c), g(·) is a concave function in �t . Therefore, by Theorem 2
(a), εt = yt −�t is an innovation sequence. Hence, the time series described in examples above have the same autocorrelation
structure of an ARFIMA process with independent noise.

4. Fitting the data

In this section, we discuss a procedure for modeling and forecasting the stationary model (1)–(2) with parametrization (4).
For illustration purposes we regard G as a member of the exponential family, but the procedure can be adapted to handle other
conditional distributions. In order to assess the performance of estimation methodology, some Monte Carlo experiments are
presented in Section 4.2.

4.1. Estimation

Assume that the time series data {y1, . . . , yn} are generated by model (1)–(2) with parametrization (4). The vector of unknown
parameters is denoted by 
= (�,�,�)′ where � is the level, �= (	1, . . . ,	p,
1, . . . ,
q ,d)′ and � is associated with the
conditional distribution G as described in Section 3.1.

First, we estimate the mean of the processes. A simple estimator for the level of the process is the arithmetic mean,
�̂n = (1/n)

∑n
t=1 yt . As shown by the next lemma, under some mild conditions, this estimate is consistent.

Lemma 2
Consider the process described by (1)–(2) with 0<d< 1

2 . If g(·) is a positive concave function, then �̂n is a n1/2−d consistent
estimate of �.

Observe that although this estimate is consistent, its asymptotic distribution may not be Gaussian, cf. Brockwell and
Davis [13, p. 527].

Once the mean � is estimated by �̂n , the parameters � and � may be estimated by using the maximum likelihood method.
For computing the likelihood, we replace � by �̂n . The conditional pseudo log-likelihood, see Box et al. [14, pp. 226–28],
is given by

L(�,�)=
n∑

t=2
lt , (7)

where lt = log f
(yt |Ft−1) and the contribution of the first observation, usually negligible for long time series, has been
removed. Given that the conditional distribution G is a member of the exponential family we write

f
(yt |Ft−1)=a∗(�t ,�)�∗(yt )exp

{
m∑

i=1
bi (�t ,�)Ri (yt )

}
, (8)

where the functions a∗(·) and bi (·) depend on the information Ft−1 only through �t and the functions �∗ and Ri do not
depend on � and �. Then,

lt =a(�t ,�)+�(yt )+
m∑

i=1
bi (�t ,�)Ri (yt ), (9)

where a = log(a∗) and �= log(�∗). In order to obtain the maximum likelihood estimator (�̂, �̂) and its precision, we need
to calculate the score and the Hessian. The score is given by

�L(�,�)

�(�,�)
=

(
T∑

t=2

�lt
��

,
T∑

t=2

�lt
��

)′
, (10)

where from (9),

�lt
��

= �a(�t ,�)

��
+

m∑
i=1

�bi (�t ,�)

��
Ri (yt ), (11)

�lt
��

= �a(�t ,�)

��
+

m∑
i=1

�bi (�t ,�)

��
Ri (yt ). (12)
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Expressions �a(�t ,�)/�� and �bi (�t ,�)/�� are functions of ��t/��, which in turn depend on the model through the sequence
{� j }. For instance, from (2),

��t

��
=�

∞∑
j=0

�� j

��
−

∞∑
j=1

yt− j
�� j

��
. (13)

The following examples illustrate the form of � j and �� j/�� for two useful parameterizations:

(a) Example 1: for a CLM–ARFIMA(0,d,0) model.
In this case �=d , ��1/��=−1 and � j =� j−1( j −d −1)/j for j�2. Then,

�� j

��
= �� j−1

��

(
j −d −1

j

)
− � j−1

j
. (14)

(b) Example 2: for a CLM–ARFIMA(1,d,0) model.
Here �= (	,d) and from Hosking [11], � j ={(1−	)−(1+d)/j}�( j −d −1)/{�( j)�(−d)} for j�1. Then,

� j = � j−1 A j , (15)

A j =
(

j −d −2

j

){
j(1−	)−(1+d)

( j −1)(1−	)−(d +1)

}
. (16)

Hence, ��1/�d =−1 and

�� j

�d
=� j−1

�A j

�d
+ A j

�� j−1

�d
, j�2, (17)

where after some algebra,

�A j

�d
=

(
j −d −2

j

)[
(1−	)

{( j −1)(1−	)−(d +1)}2

]

−
[

j(1−	)−(1+d)

j{( j −1)(1−	)−(d +1)}
]
, j�2. (18)

In addition, ��1/�	=−1 and

�� j

�	
= �� j−1

�	

(
j −d −2

j −1

)
, j�2. (19)

Finally,

�� j

��
=

(
�� j

�	
,
�� j

�d

)′
(20)

where �� j/�	 and �� j/�d are defined in (19) and (17), respectively.

In practice, only n observations y1, . . . , yn are available. But �t and the score depend on the infinite past of the process
{yt }. Therefore, the following approximations may be used:

�t ≈ �
t−1∑
j=0

� j −
t−1∑
j=1

� j yt− j , (21)

��t

��
≈ �

t−1∑
j=0

�� j

��
−

t−1∑
j=1

�� j

��
yt− j . (22)

Furthermore, in order to maximize the log-pseudo-likelihood, the Davidon–Fletcher–Powell algorithm is used in this work,
see Press et al. [15, Ch.10]. This is an attractive scheme because it avoids calculating the Hessian matrix at each iteration
of the optimization procedure. A single evaluation of the Hessian is needed to obtain the parameter variance–covariance
matrix.

Copyright © 2010 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2011, 27 23–36
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4.2. Simulations

In order to gain some insight on the finite sample performance of the quasi maximum likelihood estimation (QMLE)
described in Section 4.1, several Monte Carlo experiments were carried out. Table I shows simulation results from a Poisson
conditional distribution, with �=10, several values of the long-memory parameter d for fractional noise processes with
filter �(B)= (1− B)d and two sample sizes n =200 and n =800. The simulations results are based on 1000 repetitions.

From Table I, observe that the estimates are reasonably close to the true parameter for both � and d . For a linear Gaussian
ARFIMA process, the theoretical standard deviation of d̂ is 0.055 for n =200 and 0.028 for n =800, not depending on d .
These values are close to the results obtained from the simulations. Note that for fixed n, the estimated standard deviations
�(d̂) seem to be similar across the different values of the long-memory parameter d . This is particularly noticeable for the
case n =800, suggesting that the behavior of the estimation standard error for the conditional Poisson model seems to be
similar to the standard Gaussian case. However, some asymptotic properties of the estimates for CLM, such as consistency
and normality, have not been formally established yet. A difficulty with the asymptotic analysis of these non-Gaussian
processes is that the noise sequence is not necessarily independent. Thus, standard asymptotic results, see for example
Section 5.2 of Taniguchi and Kakizawa [16], are not applicable. On the other hand, Hosoya [17] relaxes the independence
assumption, replacing it by mixing conditions on {εt }. However, it seems that these properties have not been established for
the innovations from a CLM satisfying (1)–(2). Another path is provided by Ling and Li [18]. They proved a central limit
theorem for the maximum likelihood estimate for conditionally heteroscedastic long-memory time series. In this case, the
estimate might have an asymptotic variance greater than the non-conditional Gaussian long-memory case, as suggested by
Li et al. [19].

In order to assess the quality of QMLE estimators in the ARFIMA(1,d,0) parametrization, we conducted several Monte
Carlo simulations with two sample sizes, n =500 and n =1000. The main purpose of this study is to evaluate the perfor-
mance of the method for autoregressive parameters 	 closer to the region of non-stationarity. Recall that from Section
3.3, −d�	�(1−d)/2. In addition, we calculated the Haslett and Raftery estimator implemented in the R package and
the Whittle estimator for these simulated series. The results are summarized in Tables II and III. For n =500, the QMLE
are slightly biased. Compared with QMLE, the Whittle estimators present more bias for 	 and almost the same bias for d .
However, the QMLE is much better in terms of standard deviation and MSE. In addition, the Haslett and Raftery method
is highly biased. For n =1000 and compared with Table II, for each combination the bias of QMLE estimators is small.
Compared with QMLE, the Whittle estimators present better results in terms of bias, almost the same performance in
terms of RMSE for the parameter combinations (d =0.4,	=0.27) and (d =0.45,	=0.25). However, for the combination
(d =0.2,	=0.35), the QMLE is better in terms of RMSE. Compared with Table II, the performance of the Haslett and
Raftery estimator improves in both bias and RMSE.

4.3. Modeling and diagnostics

As observed by Tsay [20, p. 161], nonlinear time series modeling involves both the experience of the analyst and the type
of the problem under study. In practice, the nature of the variables defines the sample space Y. For instance, counting
processes lead naturally to discrete positive data. Besides, the distribution of data can be specified by means of tools such as
histograms and q–q plots. In some cases, the conditional distribution defines the form of g(�t ), for example, for a Poisson
distribution, g(�t )=�t . But, in other situations we have some flexibility when defining g(�t ). The task of determining the
conditional variance can be helped by observing the patterns of data and correlation structure from simulated time series.
The sample autocorrelation function of both the observations and their squares may give some clues about the underlying
dependence structure of the data, see for instance Baillie and Chung [21]. Furthermore, the residuals et = yt − �̂t can be used
for assessing the goodness of fit, by checking the absence of correlation on the residuals.

Table I. Monte Carlo experiments for conditional long-memory Poisson models.

n =200 n =800

d l̂ d̂ r(d̂) RMSE(d̂) l̂ d̂ r(d̂) RMSE(d̂)

0.10 10.03 0.087 0.049 0.051 10.00 0.094 0.029 0.030
0.20 10.04 0.186 0.057 0.059 10.01 0.194 0.030 0.030
0.30 10.02 0.278 0.062 0.066 10.03 0.295 0.030 0.030
0.40 10.10 0.379 0.061 0.064 10.03 0.395 0.030 0.030
0.45 10.00 0.426 0.057 0.062 10.09 0.445 0.028 0.029
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Table II. Monte Carlo experiments. One thousand replications of CLM-ARFIMA(1,d ,0) Poisson time
series of size n =500.

Parameters QMLE HR Whittle

d 	 d̂ 	̂ d̂ 	̂ d̂ 	̂

0.20 0.35 Mean 0.1559 0.3839 0.1375 0.4029 0.1429 0.4009
Bias −0.0441 0.0339 −0.0625 0.0529 −0.0571 0.0509
SD 0.0845 0.0947 0.0941 0.1101 0.1133 0.1251

RMSE 0.0953 0.1006 0.1129 0.1221 0.1268 0.1350

0.40 0.27 Mean 0.3577 0.3103 0.3134 0.3541 0.3656 0.3131
Bias −0.0423 0.0403 −0.0866 0.0841 −0.0344 0.0431
SD 0.0865 0.0986 0.1045 0.1191 0.1279 0.1353

RMSE 0.0962 0.1065 0.1357 0.1457 0.1324 0.1420

0.45 0.25 Mean 0.4042 0.2957 0.3440 0.3549 0.4061 0.3064
Bias −0.0458 0.0457 −0.1060 0.1049 −0.0439 0.0564
SD 0.0804 0.0950 0.1149 0.1326 0.1276 0.1355

RMSE 0.0925 0.1054 0.1562 0.1690 0.1349 0.1467

Table III. Monte Carlo experiments. One thousand replications of CLM-ARFIMA(1,d ,0) Poisson time
series of size n =1000.

Parameters QMLE HR Whittle

d 	 d̂ 	̂ d̂ 	̂ d̂ 	̂

0.20 0.35 Mean 0.1756 0.3706 0.1684 0.3777 0.1758 0.3731
Bias −0.0244 0.0206 −0.0316 0.0277 −0.0242 0.0231
SD 0.0617 0.0704 0.0680 0.0781 0.0771 0.0856

RMSE 0.0663 0.0733 0.0749 0.0828 0.0808 0.0886

0.40 0.27 Mean 0.3744 0.2953 0.3565 0.3117 0.3956 0.2797
Bias −0.0256 0.0253 −0.0435 0.0417 −0.0044 0.0097
SD 0.0599 0.0710 0.0598 0.0713 0.0693 0.0780

RMSE 0.0651 0.0753 0.0739 0.0825 0.0694 0.0785

0.45 0.25 Mean 0.4225 0.2781 0.3973 0.3017 0.4427 0.2648
Bias −0.0275 0.0281 −0.0527 0.0517 −0.0073 0.0148
SD 0.0573 0.0695 0.0598 0.0703 0.0619 0.0696

RMSE 0.0635 0.0750 0.0797 0.0872 0.0623 0.0711

4.4. Prediction

A major goal in the statistical analysis of time series concerns with forecasting. For the class of CLMs defined in Section
3, the distribution of the process {yt } conditional on the past information, Ft−1, has mean �t . Therefore a natural one-step
predictor of �t is �̂t , which is based on (21),

�̂t = �̂
t−1∑
j=0

�̂ j −
t−1∑
j=1

�̂ j yt− j , (23)

where each �̂ j depends on the parameter estimates �̂, �̂. Hence, the estimate conditional distribution is yt |Ft−1 ∼
G(�̂t ,g(�̂t )) and the construction of conditional prediction intervals for one-step forecasts is a simple task.

5. Results

The trading volumes and the varve sedimentary data presented in Section 2 are analyzed next by means of the methodology
proposed in Section 4.

5.1. Stock-market trading volume data

Let us begin by modeling the time series of counts consisting of IBM daily trading volumes presented in Section 2. This
series has 2024 observations, with mean 7 174 449 and standard deviation 3 773 536.

Copyright © 2010 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2011, 27 23–36
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The results from the exploratory analysis, see Figure 2, suggest that a candidate model for the data may be a conditional
long-memory Poisson, see Example (a) in Section 3.3, with an ARFIMA parametrization. The order of the model, (1,d,0),
was selected using AIC and the estimate obtained is d̂ =0.278 with standard deviation SD(d̂)=0.033, and 	̂=0.231 with
standard deviation SD(	̂)=0.042. Therefore, the corresponding t-tests are td =8.42 and t	 =5.50, both highly significant.

From Figures 5–6, the fitted conditional mean series closely resembles the evolution of the data. Besides, the sample
autocorrelation function of the residuals, see Figure 7, indicates almost no correlation. Note, however, that other whiteness
tests could be further considered for these non-Gaussian residuals, as for example the robustified Portmanteau tests by
Escanciano and Lobato [22]. Prediction bands at the level 95% for one-step volume forecasts are given in Figures 8–9. They
are based on the Poisson distribution with 2.5% each tail. Note that the time-varying confidence prediction bands allow us
to capture the time series evolution. Moreover, as expected, most of the observations are included by these confidence bands
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Figure 5. IBM daily trading volume data and fitted conditional mean. Period 1986–1989.
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Figure 6. IBM daily trading volume data and fitted conditional mean. Period 1990–1993.
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Figure 7. IBM daily trading volume data: sample autocorrelation function of residuals.
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Figure 8. IBM daily trading volume data: one-step conditional prediction bands (95%). Period 1986–1989.

(93%). Thus, the number of observations included within the predictions bands is close to its theoretical value of 95%. On
the whole, these results permit to conclude that the fit is very good.

5.2. Glacial varves data

In this case we are dealing with a continuous variable and given the features of Figures 3 and 4, a CLM-ARFIMA Gamma,
see Example (c) in Section 3.3, with parametrization (0,d ,0) selected by AIC is proposed for this time series data.

The maximum likelihood estimates are given in Table IV. As observed, both estimates are highly significant. The fitted
conditional mean series provided in Figure 10 describes the evolution of the data quite well and the empirical autocorrelation
function of residual innovations, see the left panel of Figure 11, shows no significant correlation.
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Figure 9. IBM daily trading volume data: one-step conditional prediction bands (95%). Period 1990–1993.

Table IV. Estimates for glacial varve data.

Parameter Estimate S.D. t

d 0.337 0.0262 12.86
b 0.159 0.0086 18.49

0 100 200 300 400 500 600

50

0

100

150

Figure 10. Varve data (dotted line) and fitted conditional mean (heavy line).

On the other hand, since log-varve series exhibits a symmetric histogram, see the right panel of Figure 11, it is illustrative
to compare our analysis with the linear ARFIMA Gaussian methodology applied to the transformed data. Thus, Shumway
and Stoffer [4] obtain the approximated Gaussian maximum likelihood estimate d̂ =0.384. However, the corresponding
standard error is not provided by those authors. In addition, by applying the state-space methodology described in Chan and
Palma [23] we obtain the estimate d̂ =0.3878 with standard deviation SD(d̂)=0.0133 and Student statistic td =14.2 being
highly significant. After obtaining by exponentiation the one-step predictors in the original scale, the estimated innovation
variance is 242.76. This is slightly bigger than the one obtained from the CLM methodology, 240.51. Therefore, in terms
of prediction something is gained. However, the main advantage of the proposed methodology is that no transformation of
the data is required since the observations are directly modeled.
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Figure 11. Varve data: autocorrelation function of varve residuals (left panel). Histogram of the log-transformed data (right panel).

6. Conclusions

In this paper, we have analyzed two types of non-Gaussian time series data exhibiting long-range dependence. To this end, we
have proposed a family of CLMs, which are capable of handling data with those features. As shown in the results in Section
5, these models seem to fit the data under study very well. Furthermore, the methodology applied to these observations can
be a useful tool for developing point forecasts and prediction bands. It is worth noting that unlike most of the currently
available techniques, the methodology applied in this work does not require transformation of the data. As it is well known
from the time series literature, transforming the data may create problems with the interpretation of the fitted model and
potentially inappropriate predictions bands.

Appendix A

Proof of Lemma 1
(a) Since εt = yt −E(yt |Ft−1), E(εt )=0 and Var[εt ]=E[E{(yt −�t )2}|Ft−1]=E{E(y2

t |Ft−1)−�2
t }=E{g(�t )}. (b) Since

E(εt )=0, cov(εt ,εt−k)=E(εtεt−k). Now,

E(εtεt−k)=E{E(εtεt−k |Ft−k)}=E{εt−kE(εt |Ft−k)},
but, as shown below, E(εt |Ft−k)=0 for all k�1. Consequently, E(εtεt−k)=0 and the result follows. The proof of
E(εt |Ft−k)=0 can be made by induction: (i) for k =1, E(εt |Ft−1)=0 by the definition of εt . (ii) Then, it is assumed
that E(εt |Ft−k)=0 holds for some k. (iii) Now, for k+1, E(εt |Ft−(k+1))=E{E(εt |Ft−k)|Ft−(k+1)} because Ft−k ⊃
Ft−(k+1) by properties of conditional expectation, see for example Durrett [24, p. 226]. Finally from (ii) E(εt |Ft−k)=0
and therefore E(εt |Ft−(k+1))=0, as required. (c) This follows directly from (a) and (b). �

Proof of Theorem 1
Note that E(yt )=E[E(yt |Ft−1)]=E(�t ). But, �t =�

∑∞
j=0 � j +

∑∞
j=1(−� j )yt− j and by taking expectation on both sides

we have E[�t ]=�
∑∞

j=0 � j +E[
∑∞

j=1(−� j )yt− j ]. Now, since � j�0 for j =0,1, . . . , by Theorem 16.6 of [25] the expec-
tation and the infinite sum can be commuted. Thus, E[�t ]=�

∑∞
j=0 � j +

∑∞
j=1(−� j )E[yt− j ].

Let at =E[yt ]. Then, we have at =�
∑∞

j=0 � j +
∑∞

j=1(−� j )at− j . Since
∑∞

j=0 |� j |<∞, we may write
∑∞

j=0 � j (at− j −
�)=0, or equivalently,

�(B)�(B)−1(1− B)d (at −�)=0.

Since �(B), �(B)−1, (1− B)d are invertible filters for |d|< 1
2 , we obtain at =�+c for all t , where c is an arbitrary constant.

Thus, the process {yt } has constant finite expected value. For convention we will assume that the mean is �, i.e. c is set to
be zero. �

Proof of Theorem 2
(a) Since g is concave, −g is convex. Therefore, by Jensen’s inequality, E[g(�t )]�g(E[�t ]). Then, by Theorem 1, E[�t ]=�
for all t and, hence, E[g(�t )]�g(�)<∞. Consequently, by Lemma 1(a) Var(εt )<∞, and by Lemma 1(c) {εt } is an innovation
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process. In addition, from expression (2.6) and Theorem 13.2.2 of Brockwell and Davis [13] we obtain parts (b) and (c).
Finally, item (d) follows directly from (a)–(c). �

Proof of Lemma 2
Given that g(·) is a positive concave function, by Theorem 2, the process {yt } is stationary. Now, an application of
Theorem 10.4(b) and Section 10.4 of Palma [1] yields Var(�̂n)�Cn2d−1. Hence, by the Chebyshev inequality, P(|�̂n −
�|>)�Cn2d−1/2, as required. �
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