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This document provides supplementary material related to the
paper An Efficient Estimator for Locally Stationary Gaussian Long-
Memory Processes [Palma and Olea (2010)]. It contains additional
examples of calculations of the asymptotic variance of the Whit-
tle estimates, Monte Carlo simulations, a comparison with a kernel
maximum likelihood estimation methodology, and two real life ap-
plications. Furthermore, it provides proofs of the technical lemmas
appearing in that article.

1. Introduction. In what follows, the definitions of models, parameters, co-
variance matrices, etc., corresponds to those in the manuscript by Palma and Olea
(2010). Similarly, theorem numbers refer to those in that paper. This document is
organized as follows. Section 2 contains additional illustrations of the calculation
of the asymptotic variance of the Whittle estimates. In particular, it provides ex-
plicit expressions for the matrix Γ appearing in Theorem 2.2 of Palma and Olea
(2010). Section 3 analyzes the selection of the tuning parameters N and S from an
empirical computational perspective. Theoretical optimal selection on these values
is not available yet, and it is a fundamental topic of future research. Several addi-
tional Monte Carlo experiments are discussed in Section 4. In this section we study
the finite sample performance of the proposed Whittle estimates and compare its
performance to a recently proposed kernel maximum likelihood estimator. Section
5 provides applications of the proposed methodology to two real life time series.
Finally, proofs of the lemmas appearing in Palma and Olea (2010) are provided in
the Appendix.

2. Asymptotic Variance. Two additional examples illustrating the calcu-
lation of the asymptotic variance of the Whittle estimators are provided in this
section.
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Example 2.1. (Linear trend model) Consider the LSFN model

Yt,T = σ
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t
T

)
(1−B)

−d

(
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)
εt = σ

(
t
T

) ∞∑

j=0

ηj
(

t
T

)
εt−j ,(1)

for t = 1, . . . , T , {εt} is a Gaussian white noise sequence with zero mean and unit
variance. Assume that the long-memory parameter d(u) of model (1) is specified
by a linear trend and σ(u) is constant over time,

d(u) = α0 + α1 u, σ(u) = β0,(2)

for u ∈ [0, 1]. In this case the parameter vector is (α0, α1, β0) and the matrix Γ can
be written as in Eq. (13) of Palma and Olea (2010) with

Γα =
π2

36

(
6 3
3 2

)
, Γβ =

2
β2

0

.

Thus, the asymptotic variance of α̂ = (α̂0, α̂1) can be written as

Var(α̂) ∼ 12
π2T

(
2 −3

−3 6

)
,

and the asymptotic variance of d̂(u) = α̂0 + α̂1u is given by

(3) V (u) = Var(α̂0) + 2 cov(α̂0, α̂1)u + Var(α̂1)u2 ∼ 24
Tπ2

(1− 3u + 3 u2).

Figure 1 displays this function for T = 1. Note that this variance is minimal at
u = 0.5 and maximal at u = 0 or 1.

Example 2.2. (Cubic trend model) Consider the LSFN process (1) with long-
memory parameter satisfying a cubic trend model and constant variance,

d(u) = τ0 + τ1 u3, σ(u) = β0,(4)

where 0 < d(u) < 1
2 . Now the parameter vector is (τ0, τ1, β0) and the matrix Γ can

be written as in Eq. (13) of Palma and Olea (2010) with

Γτ =
π2

168

(
28 7
7 4

)
, Γβ =

2
β2

0

.

Therefore, the asymptotic variance of the estimator τ̂ = (τ̂0, τ̂1) is given by

Var(τ̂) ∼ 8
3Tπ2

(
4 −7

−7 28

)
.
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Fig 1. Asymptotic variance of d̂(u): Linear trend model (heavy line) and Cubic trend
model (broken line).

From this formula, the asymptotic variance of d̂(u) = τ̂1 + τ̂1u
3 is given by

(5) V (u) = Var(τ̂0) + 2 cov(τ̂0, τ̂1)u3 + Var(τ̂1)u6 ∼ 16
3Tπ2

(2− 7u3 + 14u6).

This function is also depicted in Figure 1 for T = 1. In this cubic trend case the
variance reaches its minimum value at u = 4−1/3 ≈ 0.63 and its maximum at
u = 1.

3. Bandwidth Selection. Observe that as a consequence of the central limit
theorem established in Palma and Olea (2010), the asymptotic distribution of the
estimator θ̂ depends only on the sample size T and it does not depend explicitly
on N , M and S, as long as these values satisfy Assumption A3. Nevertheless, in
practice it is necessary to provide general rules for selecting these values. There an
extensive literature about the bandwidth selection problem in different contexts,
see for instance Abramson (1982), Silverman (1986), Stefanski (1990), Brockmann
et al. (1993), Robinson (1994), Dahlhaus and Giraitis (1998), Beran and Feng
(2002a,b) and Beran (2009), among others. In this section we analyze this problem
for the proposed local Whittle estimation methodology. First, we investigate the
numerical complexity of the proposed algorithm. Second, we explore the empirical
optimal selection of N , M and S for finite samples through several numerical
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experiments. However, obtaining theoretical optimality of the tuning parameters
N and S requires further research.

3.1. Computational Issues. Observe that in order to evaluate the locally sta-
tionary Whittle log-likelihood, the FFT must be computed for every one of the
M blocks of data, IN (u1, λ), . . . , IN (uM , λ). Given that the size of every block
is N , the calculation of all these FFTs is order O(MN log N) or equivalently,
O (

TNS−1 log N
)
. Consequently, large block sizes N as well as small shifts S in-

crease the number of calculations.

3.2. Empirical Optimality. In order to investigate appropriate selection of N ,
M and S in a practical setting, we study in detail the following two illustrative
examples. Note that other illustrations are discussed in Section 4 of Palma and
Olea (2010). Consider fitting the linear and cubic trend models introduced in
Examples 2.1 and 2.2, respectively, with sample sizes T = 500 and T = 1, 000.
To assess which values of N and S are optimal for these finite sample situations,
we have run a number of simulations for combinations of N = 40, . . . , 400 with
steps ∆N = 20 and S = 6, . . . , 300 with variable steps ∆S = 2 to ∆S = 10, such
that we obtain a higher resolution near the optimal location. The samples of the
LSFN processes are generated by using the innovation algorithm, see (Brockwell
and Davis, 1991, p.172) with

E[Ys,T Yt,T ] = σ
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)] ,

for s, t = 1, . . . , T , s ≥ t. The performance of the Whittle estimates can be
measured through the integrated mean squared error of d̂(u) given by

IMSE[ d̂ ] =
∫ 1−∆

∆
MSE[ d̂(u) ] du ≈ ∆

mJ

J∑

j=1

m∑

k=1

[ d̂k(uj)− d(uj) ]2,

where uj = ∆+(1−2∆)j/T , j = 1, . . . , J , J = (1−2∆)T/∆, and m is the number
of repetitions. In this case, we have chosen ∆ = 0.2 and m = 100. Figures 2 and
3 show the contour curves of the empirical IMSE of the Whittles estimates of the
linear trend model d̂(u) = α̂0+α̂1 u, with parameters α0 = 0.15 and α1 = 0.30. The
darkest zones indicate the minimal IMSE. From Figure 2 for T = 500, the optimal
selection is close to N ≈ 130 and S ≈ 25. Besides, from Figure 3 for T = 1, 000
the optimal selection in this case seems to be near N ≈ 160 and S ≈ 50. On the
other hand, Figures 4 and 5 show the empirical IMSE of the Whittles estimates of
the cubic trend model d̂(u) = τ̂0 + τ̂1 u3 with parameters τ0 = 0.05 and τ1 = 0.4.
Observe that from Figure 4 for T = 500, the optimal selection appears to be close
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Fig 2. Contour curves of the empirical IMSE of Whittle estimator for the linear trend
model with T = 500.

Fig 3. Contour curves of the empirical IMSE of Whittle estimator for the linear trend
model with T = 1, 000.
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Fig 4. Contour curves of the empirical IMSE of Whittle estimator for the cubic trend
model with T = 500.

Fig 5. Contour curves of the empirical IMSE of Whittle estimator for the cubic trend
model with T = 1, 000.
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to N ≈ 115 and S ≈ 15 while from Figure 5 for T = 1, 000 the optimal selection
seems to be N ≈ 140 and S ≈ 45. In any case, as suggested by theses plots, there
is some flexibility for choosing the values of N and S as long as they belong to the
areas with minimal IMSE. Table 1 shows the theoretical and empirical values of the
IMSE -multiplied by the sample size T - for both the linear and cubic trend models.
The integrated mean squared errors displayed in this table are based on the optimal
bandwidth selection of N and S from the contour curves. Note that the empirical
IMSE reported in this table are very close to their theoretical optimal counterparts
for both sample sizes. Finally, Table 2 provides some general practical guidelines for

Table 1

Bandwidth selection: Theoretical and empirical IMSE, multiplied by T .

Linear Trend Model Cubic Trend Model

T N S Optimal Whittle N S Optimal Whittle

500 130 25 0.4961 0.5232 115 15 0.4893 0.5262

1,000 160 50 0.4961 0.5484 140 45 0.4893 0.5329

selecting N and S, for different sample sizes. These suggested approximate ranges
are based on the several simulations with a variety of models including linear and
cubic trends for LSARFIMA models. These values can be used as references for an
initial bandwidth selection. Other combinations of N and S should be tried out to
verify the stability of the estimated parameters.

Table 2

Bandwidth selection: Suggested approximate starting ranges for N and S.

T N S

500 100–140 5–40

1000 120–210 30–60

2000 175–280 45–80

4. Simulation Studies. This section investigates the finite sample perfor-
mance of the Whittle estimators through several Monte Carlo simulations. Besides,
we carry out a comparative study of the performances of the Whittle method with
a kernel local maximum likelihood estimator.

4.1. Performance of the Whittle estimates. In order to gain some insight into
the finite sample performance of the Whittle estimator we report next several
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Monte Carlo experiments, including linear and cubic trend evolutions of the Hurst
parameter. In particular, we investigate the parameter estimation of the LSFN
process defined by (1). The first set of simulations was carried out by specifying
a linear trend for the long-memory parameter and constant noise variance, as in
equation (2) of Example 2.1. The parameters in specification (2) are such that the
vector (α0, α1, β0) satisfies 0 < d(u) < 1

2 and σ(u) > 0 for all u ∈ [0, 1]. In the
second set of simulations, we consider a cubic trend evolution of the long-memory
parameter and a constant noise scale parameter, as in model (4) of Example 2.2.
Analogously to the linear trend specification (2), in this cubic trend model the
parameter vector (τ0, τ1, β0) is such that 0 < d(u) < 1

2 and σ(u) > 0 for all
u ∈ [0, 1]. For both sets of simulations, we consider two sample sizes T = 500
and T = 1, 000 with empirical optimal selection of the subdivisons N and S as
discussed in Section 3.2. The data taper used in these experiments is the cosine
bell function h(u) = 1

2 [1− cos(2πu)]. The results, based on 1,000 replications, are
reported in Tables 3 and 4.

Table 3

Whittle estimation for the linear trend model d(u) = α0 + α1 u and σ(u) = β0.

T = 500, N = 130, S = 25

Parameters Estimates Theoretical SD Estimated SD

α0 α1 β0 α̂0 α̂1 β̂0 σ (α̂0) σ (α̂1) σ(β̂0) σ̂ (α̂0) σ̂ (α̂1) σ̂(β̂0)

0.15 0.30 1.00 0.150 0.281 0.996 0.070 0.121 0.032 0.080 0.136 0.034

0.45 -0.35 1.00 0.428 -0.322 0.999 0.070 0.121 0.032 0.070 0.123 0.034

0.20 0.25 1.00 0.199 0.229 0.994 0.070 0.121 0.032 0.083 0.140 0.035

T = 1000, N = 160, S = 50

Parameters Estimates Theoretical SD Estimated SD

α0 α1 β0 α̂0 α̂1 β̂0 σ (α̂0) σ (α̂1) σ(β̂0) σ̂ (α̂0) σ̂ (α̂1) σ̂(β̂0)

0.15 0.30 1.00 0.146 0.295 0.997 0.049 0.085 0.022 0.056 0.092 0.024

0.45 -0.35 1.00 0.437 -0.337 0.997 0.049 0.085 0.022 0.052 0.096 0.024

0.20 0.25 1.00 0.200 0.239 0.998 0.049 0.085 0.022 0.058 0.101 0.024

Table 3 exhibits the results from the linear trend model for sample sizes T = 500
and T = 1, 000. We have chosen three combinations of parameters α0, α1 and β0.
From this table, note that the means of the estimated parameters are close to
their true values. Furthermore, the estimated standard deviations are also close
to their theoretical counterparts. Table 4 reports the results for the cubic trend
model simulations for sample sizes T = 500 and T = 1, 000. Observe from this
table that the estimated parameters are very close to their true values and that
the empirical standard deviations are close to their theoretical values.
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Table 4

Whittle estimation for the cubic trend model d(u) = τ0 + τ1 u3 and σ(u) = β0.

T = 500, N = 115, S = 15

Parameters Estimates Theoretical SD Estimated SD

τ0 τ1 β0 τ̂0 τ̂1 β̂0 σ (τ̂0) σ (τ̂1) σ(β̂0) σ̂ (τ̂0) σ̂ (τ̂1) σ̂(β̂0)

0.05 0.40 1.00 0.054 0.350 0.997 0.046 0.123 0.032 0.042 0.132 0.033

0.45 -0.25 1.00 0.436 -0.235 0.996 0.046 0.123 0.032 0.052 0.161 0.035

0.10 0.30 1.00 0.098 0.259 0.997 0.046 0.123 0.032 0.054 0.158 0.035

T = 1000, N = 140, S = 45

Parameters Estimates Theoretical SD Estimated SD

τ0 τ1 β0 τ̂0 τ̂1 β̂0 σ (τ̂0) σ (τ̂1) σ(β̂0) σ̂ (τ̂0) σ̂ (τ̂1) σ̂(β̂0)

0.05 0.40 1.00 0.049 0.382 0.997 0.033 0.087 0.022 0.033 0.084 0.024

0.45 -0.25 1.00 0.447 -0.254 0.998 0.033 0.087 0.022 0.037 0.109 0.024

0.10 0.30 1.00 0.096 0.291 0.998 0.033 0.087 0.022 0.036 0.104 0.023

In summary, these simulations suggest that the finite sample performance of the
proposed Whittle estimators seems to be very good in terms of bias and standard
deviations.

4.2. Comparison of Whittle and kernel estimates. In this section we compare
the performance of the Whittle estimator with a recently proposed kernel local
maximum likelihood estimator, see Beran (2009). Suppose that we are interested
in estimating the parameter θ = d(u) at the point u = u0. In the kernel estimation
approach, we maximize the local likelihood around u0,

L(θ) =
t0+[T b]∑

t=t0−[T b]

K

(
t− t0
T b

)
e2
t (θ),

with t0 = [T u0] where [ · ] is the integer part function, et(θ) = yt−
∑t−1

j=1 πj(θ)yt−j ,
K(·) is a nonnegative kernel function such that K(u) = K(−u), K(u) = 0 for
|u| > 1, and b is a bandwidth selection parameter. The optimal choice of this
parameter is discussed in detail in Section 4 of Beran (2009).

In order to compare the performance of the Whittle and the kernel estimators,
we study the same cubic trend model discussed by Beran (2009), d(u) = τ0 +τ1 u3,
with kernel K(u) = 1

21[−1,1](u), uj = 0.2 + ∆j/T , j = 1, . . . , T/50, ∆ = 20,
τ0 = 0.05 and τ1 = 0.4. The optimal bandwidth for the kernel estimator was
selected by minimizing the empirical IMSE, as suggested by (Beran, 2009, p.7).
On the other hand, the empirical optimal bandwidth selection of N and S for the
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Whittle estimator was based on the results from Section 3.2 for the cubic trend
model.

From a theoretical point of view, one way to compare the performance of the
Whittle and kernel estimators is by means of the variance ratio. From Eq. (24) of
Beran (2009), the asymptotic variance of the kernel estimator, d̃(u), with optimal
bandwidth selection is given by, Var[d̃(u)] ∼= (

3
√

2τ1 u T−1π−2
)4/5. On the other

hand, the asymptotic variance of the Whittle estimator, d̂(u), is given by expression
(5) from Example 2.2. Hence, the variance ratio of these estimators is

Var[ d̃(u) ]
Var[ d̂(u) ]

∼=
[
3
4

]9/5
(
π2 τ2

1 u2 T
)1/5

2− 7u3 + 14 u6
.

Figure 6 displays this ratio for τ1 = 0.4, 0.2 ≤ u ≤ 0.8, and several values of T .
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Fig 6. Variance ratio of the kernel and Whittle estimates for the cubic trend model d(u) =
0.05 + 0.4 u3, for several sample sizes T .

Observe that in these cases, the Whittle estimators exhibit smaller variances than
the kernel estimators, for sample sizes larger than T = 5, 000. In addition, Figure 7
shows the variance ratio of different values of T and τ1. The heavy line represents
the contour level equal to 1. Below that line, the kernel estimator possesses smaller
variance than the Whittle estimator while the opposite occurs for the points above
that dividing line. As expected from the asymptotic efficiency provided by Theo-
rem 2.3 of Palma and Olea (2010), the Whittle estimator possesses the smallest
variance as the sample size T increases.
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Fig 7. Variance ratio of the kernel and Whittle estimates for the cubic trend model d(u) =
τ0 + τ1 u3, for different values of τ1 and T . The heavy line represents a variance ratio equal
to 1.

Now, in order to compare the Whittle and the kernel estimator from a empir-
ical point of view, we have carried out two sets of Monte Carlo simulations for
the cubic model, with T = 500 and T = 1, 000, respectively. The results, based
on 100 repetitions, are summarized in Table 5 and Figures 8 – 9. In Table 5, the
IMSE has been multiplied by T 4/5, analogously to Table 1 of Beran (2009). Ob-
serve from Table 5 that the IMSE of the Whittle estimator of d(u) is close to their
theoretical optimum while the IMSE of the kernel estimator is almost twice that
value. Figure 8 shows boxplots of the estimates from the Whittle (left panel) and
kernel (right panel) methods, respectively, for T = 500. For the Whittle method,
we used N = 115 and S = 15, the empirical optimal values provided by Figure 4
and Table 1. From the left panel of Figure 8 note that the Whittle estimates follow
closely the true model. On the other hand, from the right panel of Figure 8, the
kernel method seems to depart from the theoretical model for u > 0.4. A similar
conclusion is drawn from Figure 9 for the boxplots for sample size T = 1, 000.
Summarizing, from a theoretical point of view, the Whittle method produces ef-
ficient estimates with variances decreasing at rate O(T−1). On the other hand,
the variance of the kernel estimator decreases at the slower rate O(T−4/5). From
a practical perspective, in the examples studied in this section the Whittle es-
timates seem to outperform the kernel estimates in terms of bias and variance.



12 W. PALMA AND R.OLEA

Table 5

Comparison of Whittle and kernel estimates: IMSE for the cubic trend model, multiplied
by T 4/5.

T N S Optimal Whittle Kernel

500 115 15 0.1412 0.1518 0.3225

1000 140 45 0.1229 0.1339 0.3307
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Fig 8. Boxplots of the Whittle (left panel) and kernel (right panel) estimator of d(u) =
τ0 + τ1 u3, T = 500.

However, kernel estimators are valuable estimation tools in situations requiring a
flexible methodology for handling complex time-varying parameter structures. Fur-
thermore, in many practical settings Whittle and local smoothing techniques are
complementary, as illustrated in the real-life data analysis carried out in Section 5.

5. Data Applications. This section discusses the application of the long-
memory locally stationary methodology proposed in Palma and Olea (2010) to
the analysis of two real-life time series data. The first example involves a time
series consisting of speleothem cave deposit data. Speleothems are mineral deposits
formed in caverns. Stalactites and stalagmites are two examples of speleothems.
The second illustration is an application to tree ring data, which consist of annual
ring width measurements. A major interest in the study of these two time series
is the analysis of climatic variables, since the thickness of depositional layers and
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Fig 9. Boxplots of the Whittle (left panel) and kernel (right panel) estimator of d(u) =
τ0 + τ1 u3, T = 1, 000.

the tree ring widths are frequently used in many disciplines as climate proxies, see
for example Tan et al. (2003) and references therein.

Given the features of the series discussed in this section, we use the simple
model setup LSARFIMA with polynomial specifications for the long-memory and
the noise scale parameters:

(6) d(u) = α0 + α1u + · · ·+ αpu
p, σ(u) = β0 + β1u + · · ·+ βqu

q.

In this case, the parameter vector is θ = (α0, α1, . . . , αp, β0, β1, . . . , βq). Following
Dahlhaus (1997), the models are selected by the Akaike’s Information Criterion
(AIC) and by analyzing the significance of the parameters involved. The AIC is
given by

AIC(k) = 2LT (θ̂) + 2(p + q + 2),(7)

where LT is the locally stationary Whittle log-likelihood function. Note that the
class of LSARFIMA models contains, as a particular case, the family of stationary
ARFIMA process. Thus, by looking at the AIC given by (7) and the significance
of the parameters, it is possible to gain some insight about whether a stationary
model or a locally stationary model fits the data better. The two real-life data
examples presented next are meant only as illustrations of the application of the
methodology developed in this paper. In these two cases, the locally stationary
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models seems to fit better the time series data under study than their stationary
counterparts. However, we are not suggesting that those are the only appropriate
models. The underlying dynamic of the two data examples could be more complex
than the evolutions suggested by the LSARFIMA model fitted. Locally station-
ary processes offer a flexible and parsimonious approach to the problem. They are
flexible because they allow the fitting of a great variety of parameter evolution pat-
terns by adequately choosing the class of basis functions. On the other hand, they
constitute a parsimonious approach since the AIC model selection procedure looks
for the simplest model that fits the observed data. Furthermore, the LSARFIMA
framework allows the formal assessing of statistical hypotheses about the proposed
models by means of the properties of the parameter estimates stated in Theorems
2.1–2.3 of Palma and Olea (2010). In particular, this framework allows for the sta-
tistical model comparison of stationary and locally stationary ARFIMA models,
since ARFIMA processes are are nested in the class of LSARFIMA processes.

Year

-500 0 500 1000 1500 2000

-2
-1

0
1

Fig 10. Cave mineral deposit data from 665 BC to 1985 AD.

5.1. Speleothem Cave Deposit Data. Figure 10 displays a 2,650-year centered
time series of speleothem cave deposit data. This dataset contains stalagmite layer
thickness from Shihua Cave, China, from 665 BC to 1985 AD, see Tan et al. (2003).
The autocorrelation structure of this series is explored in Figure 11. Panel (a) of this
figure shows the empirical autocorrelation function (ACF) while Panel (b) displays
the variance plots, see (Beran, 1994, p.92-94) for details. In a variance plot, the
broken line represents the expected behavior of the variance of the sample mean of
a block of k observations for the short-memory case. On the other hand, the heavy
line represents the expected behavior of the variance for a long-memory process.
From both panels, this series seems to exhibit long-range dependence. However, a
closer look to the empirical ACF of the data reveals that the degree of long-memory
seems to change over time. In fact, Panel (a) of Figure 12 shows the sample ACF for
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the first 500 observations, Panel (b) reports the sample ACf of 500 observations
in the middle part of the series, t = 1075, . . . , 1574, while Panel (c) shows the
sample ACF of the last 500 observations, t = 2151, . . . , 2650. Note that the level of
strength of the autocorrelations looks different in each 500-year period. Moreover,
the strength of the dependence appears to increase over time. On the other hand,
from Figure 10, the variance of the series seems to decrease over time. Consistent
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Fig 11. Cave deposit data. (a) Sample ACF, (b) Variance plot.

Table 6

Cave Deposit Data: Model Fitting

Parameters Estimates SD z-value

α0 0.1763 0.0454 3.8796
α1 0.7730 0.2099 3.6832
α2 -0.4615 0.2032 -2.2709
β0 0.5753 0.0137 42.007
β1 -0.2650 0.0206 -12.853

with this exploratory analysis, we propose the fitting of a locally stationary model
to this time series, since this class of processes could capture the nonstationarity of
the variance as well as the nonstationarity of the Hurst parameter, all this within
a simplified model setup. The model selected by the AIC given by (7) and the
significance of the parameters is a LSARFIMA with p = 2, q = 1 in specification (6)
and estimates reported in Table 6. Note that according to the fourth column of this
table, all the parameters of this model are statistically significant at the 5% level.
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Fig 12. Cave deposit data. Sample ACF: (a) Observations 1 to 500, (b) observations 1075
to 1575, and (c) observations 2150 to 2650.

The evolutions of the long-memory coefficient, d(u), and the variance scale, σ2(u),
are depicted in Panels (a)–(b) of Figure 13, respectively. For comparison purposes,
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Fig 13. Cave deposit data. (a) Estimates of the long-memory parameter. (b) Estimates of
the noise variance. In both panels the heavy line represents the locally stationary ARFIMA
model, the horizontal broken line indicates the stationary ARFIMA model and the dots
represent the cubic spline smoothing.
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these plots show three estimation approaches: a locally stationary LSARFIMA
process, a stationary ARFIMA process and a cubic spline smoothing procedure.
The LSARFIMA model was fitted by means of an R computational program which
is available from the authors upon request. The stationary ARFIMA model was
fitted using the Haslett-Raftery method in R. On the other hand, the cubic spline
smoothing is an heuristic approach that allows a simple and direct insight about
the structure of the dynamic of the parameters, see for example Görg (2007). This
approach consists in estimating the values of the parameters d and σ2 for blocks
of N observations, shifting S values each time, and then smoothing the parameter
values by a cubic spline procedure. In this case, we have used the R implementation
of the cubic spline smoothing method, see for example Hastie and Tibshirani (1990)
and Chambers and Hastie (1992).
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Fig 14. Cave deposit data: Residual analysis. (a) Residuals from the fitted model, (b)
Sample ACF, (c) Sample partial ACF, (d) Ljung-Box tests.

In Figure 13, the heavy line represents the estimated values for the parameters
d(u) and σ2(u) for the fitted LSARFIMA process. The dotted lines represent these
values for a stationary ARFIMA(0, d, 0) process, fitted to the same data assuming
d and σ constant. In this case the estimates of these parameters are d̂ = 0.4005 and
σ̂ = 0.4474. Furthermore, the dots represent the cubic spline smoothing estimates.
As expected from the exploratory analysis, the long-range dependence parameter
increases over time while the variance decreases over time.

A residual analysis for the fitted LSARFIMA model is presented in Figure 14.
Panel (a) of this figure shows the residuals from the model. Panels (b) and (c)
displays the sample ACF and PACF, respectively, while Panel (d) exhibits the
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Fig 15. Cave deposit data. Left: Time-varying smoothed periodogram. Right: Theoretical
spectral density of the fitted model.

Ljung-Box whiteness tests. No significant autocorrelations or partial autocorrela-
tions are observed in Panels (b)–(c), respectively. Additionally, from Panel (d),
the Ljung-Box portmanteau statistics for testing the whiteness of these residuals
indicate that the white noise hypothesis is not rejected for all the lags considered,
at the 5% significance level. Finally, Figure 15 illustrates the performance of the
fitted LSARFIMA model from a spectral analysis perspective. The panel on the
left shows the smoothed periodogram of the cave deposit data while the panel on
the right displays the theoretical time-varying spectral density of the fitted model.
Note that the time-frequency structure of these two panels are very similar, indi-
cating that the proposed LSARFIMA model seems to fit appropriately the spectral
dynamic of this time series.

5.2. Tree ring data. Figure 16 displays a series centered annual pinus longaeva
tree ring width measurements at Mammoth Creek, Utah, from 0 AD to 1989
AD. These data, available at the National Climatic Data Center, are reported by
Graybill (1990). The sample ACF of these data, displayed in Panel (a) of Figure 17,
shows significant autocorrelations at large lags. In addition, the corresponding
variance plot, see Panel (b) of Figure 17, provides further evidence of long-memory
behavior. Nevertheless, a closer look at the autocorrelation structure by computing
the sample ACF of data stretches, see Figure 18, suggests that the strength of the
dependence seems to decay over time. In fact, the values of the sample ACF of
the first 500 observations, see Panel (a), are higher than the corresponding sample
ACF values for the other two 500-year periods considered, see Panels (b)–(c).

To account for this loss of memory over time, a LSARFIMA class of processes
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Fig 17. Tree ring data: (a) Sample ACF, (b) Variance plot.

is proposed to fit these observations. The model selected by the AIC given by
(7) and the significance of the parameters is a LSARFIMA with p = 1, q = 1
in specification (6) and estimates reported in Table 7. Note that according to
the fourth column of this table, all the parameters of this model are statistically
significant at the 5% level.

Panels (a) and (b) of Figure 19 show the evolutions of the long-memory param-
eter, d(u), and the variance scale, σ2(u), respectively. Similarly to the data appli-
cation discussed in Section 5.1, this figure includes three estimation approaches: a
LSARFIMA process, a stationary ARFIMA process and cubic spline smoothing.
In Figure 19, the heavy line represents the estimated values for the parameters
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Fig 18. Tree ring data. Sample ACF: (a) Observations 1 to 500, (b) observations 750 to
1250, and (c) observations 1490 to 1990.

Table 7

Tree Ring Data: Model Fitting

Parameters Estimates SD z-value

α0 0.3285 0.0349 9.3998
α1 -0.1890 0.0605 -3.1223
β0 0.3609 0.0162 22.2197
β1 -0.3087 0.0753 -4.0983
β2 0.3884 0.0749 5.1877

d(u) and σ2(u) for the LSARFIMA process. The dotted lines represent these val-
ues for a stationary ARFIMA(0, d, 0) process, fitted to the same data assuming
d and σ constant. In this case the estimates for these parameters are d̂ = 0.2415
and σ̂ = 0.3287. Furthermore, the dots represent the cubic spline smoothing esti-
mates. As suggested by the exploratory analysis, the fitted model indicates that
the long-range dependence parameter decreases over time. On the other hand, the
variance seems to possess a more complex evolution. Figure 20 exhibits four pan-
els exploring the structure of the residuals. Panel (a) of this figure displays the
residuals from the fitted LSARFIMA model. Panels (b) and (c) show the sample
ACF and PACF, respectively, while Panel (d) exhibits the Ljung-Box whiteness
tests. No significant autocorrelations or partial autocorrelations are observed in
Panels (b)–(c). This conclusion is formally supported by the Ljung-Box tests of
Panel (d) which indicate that the white noise null hypothesis is not rejected for all
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Fig 19. Tree ring data. a) Estimates of the long-memory parameter. (b) Estimates of the
noise variance. In both panels the heavy line represents the locally stationary ARFIMA
model, the horizontal broken line indicates the stationary ARFIMA model and the dots
represent the cubic spline smoothing.
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Fig 20. Tree ring data: Residual analysis. (a) Residuals from the fitted model, (b) Sample
ACF, (c) Sample partial ACF, (d) Ljung-Box tests.

the lags considered, at the 5% level of significance.
Finally, Figure 21 compares the empirical and theoretical spectrum for the tree

ring data. The panel on the left shows the smoothed periodogram of the tree ring
series while the panel on the right displays the theoretical time-varying spectral
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Fig 21. Tree ring data. Left: Time-varying smoothed periodogram. Right: Theoretical
spectral density of the fitted model.

density of the fitted model. From this figure, the time-frequency structure of these
two panels are very similar, indicating that the proposed LSARFIMA model seems
to fit appropriately the spectral dynamic of this time series data. Observe that
these tree ring data were also analyzed by Beran (2009). The results from our
analysis agree with those from Beran’s work since in both cases the fitted long
memory parameter decreases monotonically, as indicated by our Figure 19(a) and
Figure 8(c) of Beran (2009).

In the two real-life data applications examined above, both time series exhibit
a time-varying long-range dependence structure and heteroscedasticity which are
not adequately accounted for by fitting a stationary ARFIMA process. Moreover,
that dependence structures and noise scale evolutions seem to be better fitted by
a locally stationary ARFIMA model. Thus, these examples reveal that the long-
memory locally stationary processes can be very helpful for modeling real-life time
series data with complex time-varying parameter structures.

6. Appendix. This appendix contains the proofs of nine auxiliary lemmas
used to prove the theorems stated in Palma and Olea (2010).
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Proof. (LEMMA 1) By Fubini’s theorem and finite sum we have that

n∑

k=−n

ĝ(u, k) =
∫ π

−π
g(u, λ)

n∑

k=−n

e−ı̇kλ dλ

=
∫ π

−π

∫ π

−π
φ(u, λ + ω)f(u, ω)

n∑

k=−n

e−ı̇kλ dλ dω,

=
∫ π

−π
f(u, ω)

n∑

k=−n

{∫ π

−π
φ(u, λ + ω)e−ı̇k(λ+ω) dλ

}
eı̇kωdω

= 2π

∫ π

−π
f(u, ω)

n∑

k=−n

φ̂(u, ω)eı̇kωdω.

Let Sn(ω) =
∑n

k=−n φ̂(u, k) eı̇kω, be the partial sum of the Fourier series of φ(u, ·),
where

φ̂(u, k) =
1
2π

∫ π

−π
φ(u, λ) eı̇kλ dλ.

Since φ(u, ·) has continuous derivative, φ(u, ·) is of bounded variation. Then, by
the Dirichlet-Jordan criterion (Zygmund, 1959, Theorem 8.1(ii)), the Fourier series
Sn(ω) converges uniformly to φ(u, ω). Therefore, since f(u, ·) is integrable we have

n∑

k=−n

ĝ(u, k) = 2π

∫ π

−π
f(u, ω)Sn(ω) dω → 2π

∫ π

−π
f(u, ω)φ(u, ω) dω = 2πg(u, 0),

as n →∞.

Proof. (LEMMA 2) Summation by parts yields

HN

[
φ

( ·
T , γ

)
h

( ·
N

)
, λ

]− φ
( ·

T , γ
)

HN (λ) =
[
φ

(
N−1

T , γ
)
− φ

(
t
T , γ

)]
HN

[
h

( ·
N

)
, λ

]

−
N−1∑

s=1

[
φ

(
s
T , γ

)− φ
(

s−1
T , γ

)]
HN

[
h

( ·
N

)
, λ

]
.

But, by the mean value theorem
∣∣∣φ

(
s
T , γ

)− φ
(

s−1
T , γ

)∣∣∣ ≤ sup
0≤u≤ N

T

∣∣∣ ∂
∂ u φ(u, γ)

∣∣∣ 1
T .

But, by assumption we have

sup
u≤ N

T

∣∣∣ ∂
∂ u φ(u, γ)

∣∣∣ ≤ K sup
0≤u≤1

|γ|−2d(u) ≤ K |γ|−2d.
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Thus, ∣∣∣φ
(

s
T , γ

)− φ
(

s−1
T , γ

)∣∣∣ ≤ K |γ|−2d

T .

Furthermore, by (Dahlhaus, 1988, Lemma 5.4) |Hs(λ)| ≤ K LN (λ). Consequently,
∣∣HN

[
φ

( ·
T , γ

)
h

( ·
N

)
, λ

]− φ
(

t
N , γ

)
HN (λ)

∣∣ ≤ K |γ|−2d LN (λ),

as required.

Proof. (LEMMA 3) Assume first that ` < 0 and let n = −` > 0. By defining
the positive function g(x) = (x−1)−2d1−x−2d1 for x > 1, we can write the integral
I(`) as

I(`) =
∫ n

1
g(x) (n− x)d1+d2−1 dx +

∫ ∞

n
g(x) (x− n)d1+d2−1 dx,

where n ≥ 1. Therefore, we can write
∫ n

1
g(x) (n− x)d1+d2−1 dx

=
∫ n

1
(x− 1)−2d1 (n− x)d1+d2−1 dx−

∫ n

1
x−2d1 (n− x)d1+d2−1 dx

= (n− 1)d2−d1 B(1− 2d1, d1 + d2)−
∫ n

1
x−2d1 (n− x)d1+d2−1 dx

= (n− 1)d2−d1 B(1− 2d1, d1 + d2)−
∫ n

0
x−2d1 (n− x)d1+d2−1 dx

+
∫ 1

0
x−2d1 (n− x)d1+d2−1 dx

= (n− 1)d2−d1 B(1− 2d1, d1 + d2)− nd2−d1 B(1− 2d1, d1 + d2)

+
∫ 1

0
x−2d1 (n− x)d1+d2−1 dx

=
[
(n− 1)d2−d1 − nd2−d1

]
B(1− 2d1, d1 + d2) +

∫ 1

0
x−2d1 (n− x)d1+d2−1 dx

≤ K nd2−d1−1 + K nd1+d2−1 ≤ O(nd1+d2−1),

where B(·, ·) is the Beta function. On the other hand,
∫ ∞

n
g(x) (x− n)d1+d2−1 dx ≤ K

∫ ∞

n
x−2d1−1 (x− n)d1+d2−1 dx ≤ K nd2−d1−1.

Therefore, I(`) = O((−`)d1+d2−1), ` < 0. Now, for ` ≥ 0 we have

I(`) ≤ ` d1+d2−1
∫ ∞

1
g(x) dx,
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but 0 ≤ g(x) ≤ K x−2d1−1. Therefore,
∫ ∞

1
g(x) dx ≤ K

∫ ∞

1
x−2d1−1 dx ≤ K.

Hence, the result holds.

Proof. (LEMMA 4) Since φ is positive and symmetric in λ, there exist Q(u)−1/2

such that Q(u)−1 = Q(u)−1/2Q(u)−1/2. Let Y = Q(u)−1/2X. Then

X ′X = Y ′Q(u)Y =
∫ π

−π
φ(u, λ)

∣∣∣∣∣∣

N∑

j=1

eiλjYj

∣∣∣∣∣∣

2

dλ ≥ C

∫ π

−π
|λ|2d(u)

∣∣∣∣∣∣

N∑

j=1

eiλjYj

∣∣∣∣∣∣

2

dλ.

Thus,

X ′X
Y ′Y

≥ 2πC

∫ π
−π |λ|2d(u)|∑ eiλjYj |2dλ∫ π

−π |
∑

eiλjYj |2dλ
.

Define h∗(λ) =
|
∑N

j=1
eiλjYj |2∫ π

−π
|
∑N

j=1
eiλjYj |2dλ

. Then, this is a probability function over [−π, π]

satisfying
∫ π
−π h∗(λ)dλ = 1 and h∗(λ) ≤ N

2π . Consequently,

X ′X
Y ′Y

≥ C

∫ π

−π
|λ|2d(u)h∗(λ)dλ ≥ C inf

h∈P

∫ π

−π
|λ|2d(u)h(λ)dλ,

where P = {h :probability density in [−π, π], h ≤ N/2π}. Consequently,

X ′X
Y ′Y

≥ C
N

π

∫ π
N

0
λ2d(u)dλ =

π2d(u)C

2d(u) + 1
N−2d(u).

Hence Y ′Y = X ′Q(u)−1(φ)X ≤ KX ′XN2d(u) where K is the positive constant
K = π−2d(u)[2d(u) + 1]C−1.

Proof. (LEMMA 5) By decomposing X ∈ RNM as X = (X(u1)′, . . . , X(uM )′)′,
with X(u) = (X1(u), . . . , XN (u)) and uj are the indices defined in Section 2 of
Palma and Olea (2010), we can write

X ′[Q(φ)−1 −Q(ϕ)]X =
M∑

j=1

X(uj)′[Q(uj)−1 −Q(ϕj)]X(uj)

where ϕj = φ(uj , ·)−1/4π2. Note that Q(uj)−1 exists since φ(u, λ) > 0. Further-
more, since φ is symmetric in λ,Q(Uj)−1 can be decomposed as

Q(uj)−1 = Q(uj)−1/2Q(uj)−1/2.
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Therefore,

X ′[Q(φ)−1 −Q(ϕ)]X

=
M∑

j=1

[Q(uj)−1/2X(uj)]1[I −Q(uj)1/2Q(ϕj)Q(uj)1/2][Q(uj)−1/2X(uj)].

Hence,

|X ′[Q(φ)1 −Q(ψ)]X| ≤
M∑

j=1

[X(uj)′Q(uj)−1X(uj)]|I −Q(uj)1/2Q(ϕj)Q(uj)1/2|.

By Lemma 6, X(uj)′Q(uj)−1X(uj) ≤ KX(uj)′X(uj)N2d(uj). On the other hand
by Theorem 1.a of Fox and Taqqu (1987) we have that

|I −Q(uj)1/2Q(ϕj)Q(uj)1/2|2 = tr[I − 2Q(ϕj)Q(uj) + Q(ϕj)2Q(uj)2] = O(N).

Therefore, |X ′[Q(φ)−1 −Q(ϕ)]X| ≤ KN2d+ 1
2

∑M
j=1 X ′(uj)X(uj) as required.

Proof. (LEMMA 6) Assume that the vector X ∈ RMN is decomposed as
X ′ = (X ′

1, . . . , X
′
M ) where X ′

i = (Xi(1), . . . , Xi(N)) ∈ RN . Thus, X ′RX =∑M
ij=1 X ′

iRijXj . In turn, by (??)

Rij(r, s) = E(Yti−N/2+1+r,T Ytj−N/2+1+s,T )

= h
(

r
N

)
h

(
s
N

) ∫ π
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(
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)
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(
s
N

) ∫ π

−π
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(
1
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)
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(
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)
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.

Therefore,
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and
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.
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Thus,

|X ′RX| ≤
M∑

i,j1

N∑

r,s=1

h
(
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N

)
h

(
s
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) |ti − tj |d(ui)+d(uj)−1
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(
i

M , r
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)
ω

(
i
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N

)∣∣∣

+O
(

M2N2

T

)

≤ KM2N2T−1
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
h(x)h(y)|u− v|d(u)+d(v)−1T d(u)+d(v)

× |ω(u, x)||ω(v, y)|dx dy du dv +O
(

M2N2

T

)
.(8)

where ω : [0, 1] × [0, 1] → R is an integrable function such that Xi(r) = ω( i
M , r

N )
for i = 1, . . . ,M and r = 1, . . . , N. On the other hand, by Lemma 6 with δ = 2d+1
we have,

X ′A−1X = X ′A(ϕ)X +O(X ′XN δ),

and,

X ′A(ϕ)X =
M∑

j=1

X ′
jA(ϕ)Xj =

M∑

j=1

N∑

r,s=1

Xj(r)Xj(s)ϕ̂(u, j, r − s),

where ϕ(λ) = [4π2φ(λ)]−1. Thus,

X ′A(ϕ)X = K
M∑

j=1
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r,s=1

ω
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j
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N

)
ω

(
j
M , s

N

) ∣∣ r
N − s

N

∣∣2dj−1 1
N2M

(MN2dj+1)

≥ KMN

∫ 1

0

∫ 1

0

∫ 1

0
|ω(u, x)||ω(u, y)||x− y|2d(u)−1N2d(u)dx dy du.(9)

Now, by combining (8) and (9) we get
∣∣∣∣

X ′RX

X ′A−1X

∣∣∣∣ ≤ K
MN

T
B(N, T ),

where

B(N, T )

=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
h(x)h(y)|u− v|d(u)+d(v)−1T d(u)+d(v)|ω(u, x)||ω(v, y)|dx dy du dv

×
[∫ 1

0

∫ 1

0

∫ 1

0
|ω(u, x)||ω(u, y)||x− y|2d(u)−1N2d(u)dx dy du

]−1

.
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Given that 0 ≤ d(u), d(v) ≤ d, for all u, v ∈ [0, 1] we conclude

B(N,T ) ≤ K

(
T

N

)2d

,

proving the result.

Proof. (LEMMA 7) Consider a real number α ∈ (0, 1] satisfying 1 − α =
O(1/N). Then, we can write

|C(N)| ≤ K log N
N−1∑

t=0

N−1∑

k=N−t

1
k2

= K log N





αN∑

t=1

N−1∑

k=N−t

1
k2

+
N−1∑

t=αN+1

N−1∑

k=N−t

1
k2



 .

For t
N < α < 1 we have

N−1∑

k=N−t

1
k2

=
1
N

N−1∑

k=N−t

(
N

k

)2 1
N
≤ K

1
N

∫ 1

1− t
N

dx

x2
≤ K

1
N

t/N

1− t/N
.

Thus,

αN∑

t=1

N−1∑

k=N−t

1
k2
≤ K

N

αN∑

t=1

t/N

1− t/N
≤ K

∫ α

0

x

1− x
dx ≤ −K log(1− α).(10)

Since 1 − α = O( 1
N ), we have − log(1 − α) ∼ log N . On the other hand, for

αN + 1 ≤ t ≤ N − 1 we can write

N−1∑

k=N−t

1
k2
≤

∞∑

k=1

1
k2

=
π2

6
,

Therefore,

N−1∑

t=αN+1

N−1∑

k=N−t

1
k2
≤

N−1∑

t=αN+1

π2

6
≤ N(1− α)

π2

6
= O(1).(11)

Finally, by combining inequalities (10) and (11) we obtain the result.

Proof. (LEMMA 8) Note that for k ≥ 1 we have k2− d2 ≥ (k− 1)2. Hence, for
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any α ∈ (0, 1] we can write

|D(N, T )| ≤ C
log
N

N
N−1∑

t=0

N−1∑

k=N−t

1
(k − 1)2

(
t

T

)

= C
log N

T

N−1∑

t=0

N=2∑

k=N−t

1
k2

(
t

N

)

= C
log N

T





αN∑

t=2

N−2∑

k=N−t

1
k2

(
t

N

)
+

N−1∑

t=αN+1

N−2∑

k=N−t

1
k2

(
t

N

)

 .

For 2 ≤ t ≤ αN , we have

N−2∑

k=N−t

1
k2

=
1
N

N−2∑

k=N−t

(
N

k

)2 1
N
≤ K

1
N

∫ 1

1− t
N

x−2dx ≤ K
1
N

[
( t

N )
1− ( t

N )

]
,

where t
N ≤ α < 1. Hence,

αN∑

t=2

N−2∑

k=N−t

1
k2

(
t
N

) ≤ K
1
N

αN∑

t=2

( t
N )2

1− ( t
N )2

≤ −K log(1− α).

Now, by choosing α = 1−O( 1
N ) we have that − log(1−α) = O(log N). The second

term can be bounded as follows. Since

N−2∑

k=N−t

1
k2
≤

N∑

k=1

1
k2
≤ π2

6
,

we have

N−1∑

t=αN+1

N−2∑

k=N−t

1
k2

(
t

N

)
≤ π2

6

N−1∑

t=αN+1

(
t

N

)
≤ KN

∫ 1

α
xdx =

K

2
N(1− α2).

But, 1− α2 = 1−
[
1−O

(
1
N

)]2
= O

(
1
N

)
, so that

∣∣∣∣∣∣

N−1∑

t=αN+1

N−2∑

k=N−t

1
k2

t

N

∣∣∣∣∣∣
≤ K.

Consequently, |D(N, T )| ≤ K log2 N
T , as required.
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Proof. (LEMMA 9) Consider first the case z ∈ [0, 1]. Note that the above
integral can be written as I(z) = I1(z) + I2(z) where

I1(z) =
∫ z

0
(z − x)α−1

∫ ∞

1
(y − x)−β(y − z)α−1 dy dx,

and

I2(z) =
∫ 1

z
(x− z)α−1

∫ ∞

1
(y − x)−β(y − z)α−1 dy dx.

Now, I1(z) can be written as

I1(z) =
∫ z

0
xα−β−1

∫ ∞

1−z
(y/x + 1)−βyα−1 dy dx.

An application of Eq. (3.194-2) of Gradshteyn and Ryzhik (2000) yields

I1(z) =
(1− z)2α−β

β − α

∫ z

0

(
x

1− z

)α−1

F

(
β, β − α, β − α + 1,− x

1− z

)
dx

1− z
,

where F (·) is the hypergeometric function. By changing variables, this integral can
be written as

I1(z) =
(1− z)2α−β

β − α

∫ z
1−z

0
xα−1F (β, β − α, β − α + 1,−x) dx.

Consequently,

I1(z) ≤ (1− z)2α−β

β − α

∫ ∞

0
xα−1F (β, β − α, β − α + 1,−x) dx.

But, by Eq. (7.511) of Gradshteyn and Ryzhik (2000) we conclude I1(z) ≤ K(1−
z)2α−β. By analogous calculations, the second integral is given by

I2(z) =
(1− z)α−β

β − α

∫ 1

z
(x− z)α−1F

(
β, β − α, β − α + 1,

x− z

1− z

)
dx

=
(1− z)α−β

β − α

∫ 1

0
xα−1F (β, β − α, β − α + 1, x) dx.

Hence, by Eq. (7.512) of Gradshteyn and Ryzhik (2000) we conclude I2(z) = K(1−
z)2α−β. On the other hand, by similar procedures we obtain I(z) = K(z − 1)2α−β

for the case z ∈ (1, 1 + δ], proving the result.
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