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Abstract

This paper discusses the estimation of fractionally integrated processes with seasonal compo-
nents. In order to estimate the fractional parameters, we propose several estimators obtained from
the regression of the log-periodogram on different bandwidths selected around and/or between the
seasonal frequencies. For comparison purposes, the semi-parametric method introduced in Geweke
and Porter-Hudak (1983) and Porter-Hudak (1990) and the maximum-likelihood estimates (ML) are
also considered. As indicated by the Monte Carlo simulations, the performance of the estimators
proposed is good even for small sample sizes.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The fractionally integrated autoregressive moving average model (ARFIMA) with sea-
sonal component has recently been considered in many works and has been used to de-
scribe a large number of real world cyclical phenomena exhibiting long-range dependence.
For examplePorter-Hudak (1990has examined monetary aggregates using a seasonal
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differenced process. This model has been also consideretagsier (1994)Both works

have employed the semi-parametric regression of the log-periodogram mett@elvelke

and Porter-Hudak (1983fpr the estimation of the fractional long-memory parameter in the
seasonal ARFIMA model. The spectral density of a non-seasonal ARFIMA process has only
one pole at zero frequency. However, some works have recently proposed an extension of the
ARFIMA process to model time series with long-memory behavior at any given frequency
in [0,7]. This generalization is the Gegenbauer autoregressive moving average (GARMA)
model. The GARMA model was first suggested Bgsking (1981)and later studied by
Andel (1986) Gray et al. (1989, 1994ndChung (1996)Other extensions of the GARMA
process are the fractional ARUMA model discusseddinaitis and Leipus (1995nd the
k-factor GARMA models proposed Byfoodward et al. (1998)The ARUMA or k-factor
GARMA models allowk long-memory parameters associated foequencies in [0s]. In

addition Arteche and Robinson (200Bve introduced the seasonal or cyclical asymmetric
long-memory process and the usual estimation methods, regression of the log-periodogram
and local Whittle are extended to this model.

The main objective of this paper is to propose a number of semi-parametric estimation
methodologies for seasonal long-range-dependent processes and to evaluate their perfor-
mance via Monte Carlo simulations. Like the Geweke and Porter-Hudak method, the pro-
posed techniques are based on the regression of the log-periodogram. However, we consider
a number of different bandwidth selections around the seasonal frequencies as explained
in Section 3. Our Monte Carlo experiments indicate that some of the bandwidth choices
produce very good estimates of the long-memory parameters. For comparison purpose, the
parametric Gaussian ML estimator, see for example Section B&rah (1994)is included
in the simulation study.

The remaining of this paper is structured as follows. The Section 2 presents the class
of seasonal fractionally integrated processes under consideration in this simulation study.
Section 3 addresses several semi-parametric estimation procedures as well as the maximum-
likelihood method. Section 4 studies the behavior of the estimation procedures through
Monte Carlo simulation and final remarks are given in Section 5.

2. The model

Let {X;} be a zero-mean seasonal fractionally integrated process defined as
1-B)'(1-BH’X, =4 (1)

forr=1,...,n,whered, D € R, {&},c7 is a white-noise process with zero mean, variance

2, Bis the usual backshift operator as the seasonal period. The process specified by

(1) is the seasonal fractionally integrated processes denoted here by ARRISMA) x

(0, D, 0);. A more general class of seasonal models can be generated by allpling

to be an stationary and invertible seasonal ARMA process. This generalized process is
denoted ARFISMAp, d, ¢) x (P, D, Q), wherep, g, P andQ are the polynomial order of

the non-seasonal and seasonal autoregressive (AR) and moving-average (MA) operators,
respectively. However, for convenience, this paper is restricted to time-series models with
p=q=P=0=0.Definition (1) is motivated by the works IBeiris and Singh (199&nd
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Hassler (1994)The former discussed the general ARFISMA process focusing on prediction
issues and the latter considered model (1) witk 0 and defined1 — B*)” as arigid
filter. Hassler (1994also presented the flexible ARFISMA model. The flexible model was
also considered i©oms (1995) In this work, the author presented a survey related to
seasonal long-memory process, discussed the estimation and inference of the parameters
and considered some applications.

The spectral density of a non-seasonal ARFIMA model behavesflike ~ C|1|=%,
for A — 0, for some positive constaudt, and the autocorrelation betweéhn and X,
satisfiesp(k) ~ k%=1, ask — oo. When|d| < 3 the process is stationary and invertible.
For positived the process is said to have long memory and, whefl ord < Othe processis
said to be short or intermediate memory (antipersistent), respectively. For a detailed review
of these processes see, for examp@eran (1994) Since the seminal work b¢eweke
and Porter-Hudak (1983nany estimators of the parametkhave been proposed in the
literature of long-memory time series, see, for exarR@esen (1994 Arteche and Robinson
(2000) and references therein. A recent empirical investigation of different methods for
estimating ARFIMAp, d, ¢g) models is given ifReisen et al. (2001Additional references
for parameter estimation in long-memory processes incMd€oy and Walden (1996)
Jensen (1999Whitcher (2004)andLopes et al. (2004)

Giraitis and Leipus (1995have introduced the fractional ARUMA, d1, ..., d,,0)

noise model with parameters, ..., d, (d; # 0,j =1,...,r) and fixed frequencies
0<l1<,..., <A <7 as a stationary proce$s obtained from the solution of the equa-
tion
di,....d;
V/ﬁ-»--,’/ﬁtr Y, =¢, (2)

whereg; is defined as in Eq. (1)/; are fractional differencing degrees aﬁ’dl’“" Y

]'[jzl[(l Be%i)(1 — Be %i)]9 . As shown below, model QD isa partlcular case of the
fractional ARUMA process defined by (2). For simplicity, assume that the psii®dven
and let/, be the seasonal frequency defined.as- 2’“’ ,forv=1,2, ..., % The filter in
Eq. (1) may be written as

s
51

(1-B)'(1-B)’=(1-B)'1-B)"1+B)" [] 11— Be")(L - Be )]”

j=1
:[(1 _ Beio)(l o Bein)](aLFD)/Z[(l o BeiTE)(l _ BefiT[)]D/Z
5-1
x []1@-Beé%)@ - Be )P
j=1
2 | y
=[] - Be”)a— Be ) €)
j=0
withdg = 2,1 =0,d; = Dfor j =1, .. 1andds—f.

Using expression (3) and Theorem 2®i‘ra|t|s and Lelpus (1995)we conclude that
model (1) is an ARUMAQ, d+D, D,...,D, 2 , 0) process and it is causal and invertible if
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Fig. 1. Spectral density of the model (1) wheh= 0: (a) model ARFISMAQO,0.2,0)4; (b) model
ARFISMA(0, 0.2, 0)12; (c) model ARFISMAQ, 0.2, 0)4 and (d) model ARFISMAO, 0.4, 0) 1.

andonlyifld+D| < % |D| < % Thus, according to expression (3), the seasonal fractionally
integrated process defined by (1) has a long-memory componeh#f@ > 0, i.e. it has a
pole at zero frequency. Furthermore, model (1) has long-memory seasonal components at
frequenciest, = 2, forv=1,2,..., 5.
Note that fors odd, the expression (3) does not have the té€krt B). In this situation,
the model (1) is an ARUMAO, 452 D, ..., D, 0) model.
By allowingd, D € (—%, % ), the spectral density of model (1) displays zeros or poles
at some frequencies in the interyaln, ]. The spectral density of model (1) is given by
2
F(2) = ZEI2 sintis 2)172P (2 sin(i/2)1 % @)
for —r <A< m. Observe that at the seasonal frequengies 2nv/s,v=0,1,...,[s/2],
and forD > 0 and/ord > 0, f (1) becomes unbounded and behaves as

2 2 ) —2d
f (z+ —””) ~ s 2sin 2 T G0, 5)
S 2n S

wherev > 0. Observe that the expressimsin%rz’i is bounded fow =1, ..., [s/2]. For
v=0, f(A) ~ |2|72P+)C, asi — 0 whereC is a positive constant.

Figs. land2illustrate the behavior of (4) for some valuednfd ands. Fig. 1shows the
symmetric cased= 0). FromFig. 2, we see that there is a strong influence of the fractional
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Fig. 2. Spectral densities of model (1): (a) model ARFIS{/0.2,0) x (0,0.4,0)4; (b) model
ARFISMA(0,0.2,0) x (0,0.4,0)12; (c) model ARFISMAO,0.4,0) x (0,0.2,0)4 and (d) model
ARFISMA(O0, 0.4, 0) x (0, 0.2, 0)1>.

parameted on the shape of the spectral density, even for those seasonal frequencies far
away from the zero frequency.

A more general class of asymmetric seasonal models was considefetédhe and
Robinson (200Q)However, for convenience we restrict our attention to the asymmetric
and symmetric seasonal cases specified by (1). In Section 3, we discuss several estimation
methods ford andD.

3. Estimation methods
3.1. Semiparametric estimates

A multiple linear regression equation is obtained by taking logarithms in expression (4)

2
log f (/) = log % — Dlog[2 sin(is/2)]? — d log[ 2 sin(1,/2)]2 (6)

for —n <A< n. Estimates ofi andD may be obtained by replacing4) by the periodogram
1(2) =n"Y3""_; X,€%|? and then approximating regression (6) by

log (1) =~ag— D log[2 sin(As/2)]> — d log[2 sin(1/2)]> + U, )
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whereqg is a constant and/ = 1‘(4&) E[ln j’,((‘))] This is a natural extension of the
non-seasonal method given@eweke and Porter-Hudak (1983)

Now, assume forsimphcnythatthe number of observatioisslivisible bys. We consider
the frequencies, ; _% T, v=0,1,...,[5]1-1, j=12,...,m,forsome choice of

the bandwidtimwhich satisfies atleag%,H; — O0aw — o0. Sinced mustliein(0, ), we
set)v[%] =T 2% Different estimation methods f@randd may be obtained by appropriate
choices of the harmonic frequendy: GPH,, for v =0, 1,...,[s/2], is the regression

estimator obtained by choosir@—’ frequencies on the right-hand side of the seasonal
frequencyi, with exception ab = 3, as defined previously. For exampleg #£4, we obtain

the estimators GP§ GPH, and GPH by using the frequencie® ; = T, M= 5 24 =L 27”
andp j=m— Znﬂ respectively, foj =1, ..., m. In order to avoid overlapping frequenmes
whenestimatindandD using GPH, we choosensuch thatr < 5-. Observe thatfar=7-,

Av.m corresponds thefrequenéyJM Consequently, GPlses frequenciek 1 = 2,1” to
2o 0L =Z. Note that for largawe haverJ € [0, Z]. Similarly, for GPH /1 j € [, 5+

and for GPH/y ; € [n — S,n].

GPH, allows us to obtain estimates of the fractional parameters around each seasonal
frequency. Hence, if the estimates®fat each seasonal frequengyare not significantly
different, we may assume that the process (1}ha#, thatis, the process has a rigid model
representationHassler, 199% Note that GPlJ corresponds to the method proposed by
Porter-Hudak (1990p estimateal andD, that is, taking into consideration only frequencies
in a neighborhood of the origin.

The GPH method;T for total, calculates the estimates by using all harmonic frequencies
in the regression equation (7). On the other hand, the gRkthod P for partial, considers
a collection of the Fourier frequencies chosen around the right-hand side of the seasonal
frequencies (left-hand side when= [%]). It should be noted that in the cased¥= 0, the
spectral density around each seasonal frequency is symmetric. Hence, tha&ypétsion
is analogous to the regression GPbut with fewer observations to be regressed. Conse-
quently, it is expected that GRHproduces more precise estimates than @Rhethod.

Fig. 3illustrates the region (solid line) where the frequencies are selected from, for each
method described above.

3.2. Maximume-likelihood estimates

Assuming that the procesgX,;} is Gaussian, the log-likelihood function may be
expressed as

Z,(0) = —3 log det T (fp) — 3 X'T(fp) X, ®)
wheref = (d, D) is the parameter vectory is the spectral density given in (4X =
(X1, ..., X,) andT is the variance—covariance matrix {of;},

Y

1 ) o
Tik = — fo(A) expidjk) d2,
2n J_,
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Fig. 3. Examples of the region of the spectral density used in each regression estimator (solid<ide)a)
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see for exampl8eran (1994, Section 5.3yhe ML estimates are obtained by maximizing
(8), thatisg=arg max.Z,(0). The asymptotic variance @fmay be obtained as in Section
5.2 of Taniguchi and Kakizawa (2000)e.,

T

0
20 fo(A)

A 4n -1
var[0];7[ 0 fo(A) di} .

In particular, for an ARFISMAQ, d, 0) x (0, D, 0),, this expression reduces to:

4 -1 n—z —a
A ~ TE_ . 2 6 S
var(0] ~ [n (36 as>:| B 2 |
6
wherea, = 1 [ {log|2 sin(%)[}{log|2 sin(s%)|} d/. Fors = 4, we have
variiy = L (0647 ~0.160
~n \ —0.160 Q647) -
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Hence, cord, D) = —0.247. On the other hand, fer= 12, we have

var(d] ~ 1/ 0648 -0.162
~n\-0162 0648)°

and then cord, D) = —0.250. The computation of the ML is cumbersome, especially for
large sample sizes. In order to make more efficient this method, we used the state space
approach proposed liyhan and Palma (1998)

4. Monte Carlo simulation study

In order to assess the finite sample performance of the methods proposed in Section 3,
a number of Monte Carlo experiments were carried out. The simulation results give the
mean and the MSE of the estimation procedures based on 1000 replications. All calcula-
tions were carried out using a Ox program (see for exarBgernik, 1999 in a AMD
Athlon XP 1800 computer. The performances of the estimates are preseftdilan 1-8
We consider sample sizas= 240, 480 and 3600, and seasonal perieds4 and 12. The
models and the values Bfandd are specified in the tables. The best results (smallest bias
or MSE) are in boldface. Simulations with other valuesi@nd D—not shown here but
available on request—were also considered in the study and the estimators showed similar
behavior. The ARFISMA processes were simulated following the method suggested by

Table 1
Estimates oD whenD = 0.2 ands =4
n Stat. Estimators
GPHy GPHp GPHy GPH; GPH ML
240 Mean 0.1983 0.1955 0.1803 0.2023 0.2039 0.1851
MSE 0.0061 0.0078 0.0310 0.0250 0.0208 0.0038
480 Mean 0.1995 0.1976 0.1864 0.2043 0.2019 0.1962
MSE 0.0030 0.0043 0.0134 0.0131 0.0104 0.0016
3600 Mean 0.1996 0.1980 0.1961 0.1986 0.1992 0.2063
MSE 0.0003 0.0003 0.0011 0.0013 0.0011 0.0003
Table 2
Estimates oD whenD = 0.4 ands =4
n Stat. Estimators
GPHy GPHp GPHy GPH; GPH ML
240 Mean 0.4147 0.4138 0.4099 0.4249 0.4065 0.3902
MSE 0.0074 0.0103 0.0297 0.0229 0.0254 0.0039
480 Mean 0.4064 0.4001 0.4141 0.4020 0.3841 0.4040
MSE 0.0026 0.0034 0.0091 0.0088 0.0133 0.0019
3600 Mean 0.4021 0.4015 0.4011 0.4043 0.3992 0.4286

MSE 0.0003 0.0004 0.0010 0.0012 0.0013 0.0012
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Table 3
Estimates oD whenD = 0.2 ands = 12
n Stat. Estimators
GPHp GPHp GPHy GPH, GPH
240 Mean 0.2039 0.2090 0.2128 0.1961 0.1998
MSE 0.0106 0.0191 0.1628 0.1065 0.1061
480 Mean 0.2051 0.2088 0.2128 0.2466 0.1592
MSE 0.0039 0.0065 0.0443 0.0420 0.0433
3600 Mean 0.1996 0.1981 0.2024 0.2040 0.1898
MSE 0.0003 0.0006 0.0028 0.0027 0.0048
n Stat. GPH GPHy GPHg GPHg ML
240 Mean 0.1757 0.1987 0.2483 0.2315 0.1851
MSE 0.1648 0.1175 0.1140 0.1574 0.0061
480 Mean 0.1943 0.2311 0.1932 0.2249 0.1972
MSE 0.0382 0.0344 0.0672 0.0455 0.0019
3600 Mean 0.2015 0.1907 0.2046 0.1940 0.2056
MSE 0.0042 0.0036 0.0036 0.0051 0.0002
Table 4
Estimates oD whenD = 0.4 ands = 12
n Stat. Estimators
GPHp GPHp GPHy GPH, GPH,
240 Mean 0.4133 0.4146 0.3802 0.4930 0.4245
MSE 0.0086 0.0163 0.1557 0.1575 0.1390
80 Mean 0.4126 0.4195 0.3995 0.4560 0.3965
MSE 0.0039 0.0061 0.0387 0.0384 0.0471
3600 Mean 0.4006 0.3997 0.3943 0.4004 0.3992
MSE 0.0003 0.0006 0.0035 0.0037 0.0031
n Stat. GPH GPHy GPHs GPHg ML
240 Mean 0.3891 0.4136 0.4206 0.3811 0.3854
MSE 0.1333 0.1081 0.1180 0.1204 0.0054
480 Mean 0.4020 0.4264 0.4525 0.4032 0.4017
MSE 0.0426 0.0506 0.0444 0.0563 0.0019
3600 Mean 0.3978 0.4068 0.3948 0.4048 0.4234
MSE 0.0041 0.0036 0.0031 0.0036 0.0008

Hosking (1984with Gaussian noise with unit variancEables 1-4display the results
concernedtothe model ARFISMB, D, 0), and the remainingtables give the results related
to the ARFISMAQ, d, 0) x (0, D, 0),.

From Tables 1to 4, two of the methods proposed, namely GP&hd GPH>, perform
very well and much better than the GRH his estimator gives for eaahsimilar estimates
and, in practical situations, this may be useful to verify the assumption of a rigid model, that
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Table 5
Estimates ofl andD whend = 0.1, D =0.3 ands =4
n Stat. Estimators
GPHp GPHp GPHy GPH; GPH ML
240 Mean(d) 0.1086 0.1089 0.1194 — — 0.0784
MSE(d) 0.0051 0.0054 1.8774 — — 0.0031
Mean(D) 0.2997 0.2981 0.2998 0.2884 0.3098 0.2858
MSE(D) 0.0076 0.0091 2.3461 0.1886 0.0721 0.0030
480 Mean(d) 0.1053 0.1052 0.2331 — — 0.0831
MSE(d) 0.0020 0.0022 0.8630 — — 0.0019
Mean(D) 0.3032 0.3046 0.1605 0.3147 0.3166 0.2936
MSE(D) 0.0030 0.0040 1.0673 0.0480 0.0262 0.0016
3600 Mean(d) 0.0999 0.1004 0.0819 — — 0.0956
MSE(d) 0.0004 0.0004 0.1039 — — 0.0002
Mean(D) 0.3013 0.3001 0.3169 0.3053 0.2979 0.3021
MSE(D) 0.0003 0.0004 0.1236 0.0042 0.0023 0.0002
Table 6
Estimates ofl andD whend = 0.1, D = 0.3 ands = 12
n Stat. Estimators
GPHp GPHp GPHy GPH;
240 Mean(d) 0.1108 0.1164 0.3859 —
MSE(d) 0.0075 0.0095 11.996 —
Mean(D) 0.2988 0.3009 —0.0051 0.4453
MSE(D) 0.0107 0.0219 16.131 1.1499
480 Mean(d) 0.1014 0.1025 0.1419 —
MSE(d) 0.0023 0.0033 2.9211 —
Mean(D) 0.3130 0.3077 0.2718 0.3361
MSE(D) 0.0032 0.0063 3.8261 0.2369
3600 Mean(d) 0.0984 0.0980 0.2167 —
MSE(d) 0.00020 0.0003 0.3618 —
Mean(D) 0.3025 0.3011 0.1703 0.2861
MSE(D) 0.0003 0.0006 0.4392 0.0166
n Stat. GPH GPHg GPHy GPHg GPHg ML
240 Mean(d) — — — — — 0.0783
MSE(d) — — — — — 0.0031
Mean(D) 0.0369 0.4335 0.2085 0.2184 0.3353 0.2897
MSE(D) 0.9057 0.8596 1.0174 1.2959 0.5675 0.0032
480 Mean(d) — — — — — 0.0806
MSE(d) — — — — — 0.0016
Mean(D) 0.2428 0.2929 0.2661 0.3054 0.2915 0.2949
MSE(D) 0.3099 0.3045 0.2143 0.3471 0.1038 0.0014
3600 Mean(d) — — — — — 0.0957
MSE(d) — — — — — 0.0002
Mean(D) 0.2908 0.3007 0.3025 0.3002 0.31372 0.3028
MSE(D) 0.0126 0.0163 0.0146 0.0156 0.0083 0.0002
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Table 7
Estimates ofl andD whend = 0.2, D =0.4 ands =4
n Stat. Estimators
GPHp GPHp GPHy GPH, GPH
240 Mean(d) 0.206 0.206 0.153 — —
MSE(d) 0.004 0.004 1.791 — —
Mean(D) 0.404 0.402 0.455 0.473 0.437
MSE(D) 0.006 0.009 2.296 0.193 0.061
480 Mean(d) 0.202 0.200 0.121 — —
MSE(d) 0.002 0.003 0.987 — —
Mean(D) 0.407 0.409 0.492 0.443 0.436
MSE(D) 0.003 0.004 1.250 0.074 0.027
3600 Mean(d) 0.201 0.202 0.179 — —
MSE(d) 0.0002 0.0003 0.117 — —
Mean(D) 0.406 0.405 0.434 0.414 0.398
MSE(D) 0.0003 0.0005 0.142 0.005 0.003
Table 8
Estimates ofl andD whend = 0.2, D = 0.4 ands = 12
n Stat. Estimators
GPHy GPHp GPHy GPH;
240 Mean(d) 0.208 0.211 0.657 —
MSE(d) 0.006 0.008 10.040 —
Mean(D) 0.414 0.410 —0.062 0.394
MSE(D) 0.010 0.017 13.850 0.995
480 Mean(d) 0.204 0.203 0.242 —
MSE(d) 0.003 0.004 3.105 —
Mean(D) 0.403 0.406 0.337 0.421
MSE(D) 0.003 0.005 4112 0.225
3600 Mean(d) 0.205 0.205 0.133 —
MSE(d) 0.0003 0.0003 0.374 —
Mean(D) 0.405 0.405 0.494 0.405
MSE(D) 0.0003 0.0006 0.485 0.014
n Stat. GPH GPHs GPHy GPHg GPHs
240 Mean(d) — — — — —
MSE(d) — — — — —
Mean(D) 0.418 0.483 0.377 0.341 0.379
MSE(D) 0.835 1.093 1.412 1.003 0.437
480 Mean(d) — — — — —
MSE(d) — — — — —
Mean(D) 0.447 0.430 0.441 0.408 0.409
MSE(D) 0.185 0.214 0.303 0.327 0.104
3600 Mean(d) — — — — —
MSE(d) — — — — —
Mean(D) 0.415 0.421 0.394 0.409 0.397
MSE(D) 0.015 0.015 0.017 0.019 0.009
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is,d =0.0. The good behavior of these methods is directly related to the fact that the spectral
density is symmetric around all seasonal frequenciesHiged in the previous section). In

the regression methods, better estimates are obtained from Gtéller bias and MSE)

since this method involves all harmonic frequencies in the regression equation. For small
sample sizes, the MSE of all methods increases wihe to the fact that fewer Fourier
frequencies are involved in the regression equation (compare for example Tables 1 and 2
for n = 240). This effect becomes insignificantragcreases. Note that the approximate
parameter variance based on Gaussian processes widhare 00027, 0.0014 and (0002

for n = 240,480 and 3600, respectively. Foe= 12 the parameter variances ar@@®5,
0.0013 and 002 forn = 240, 480 and 3600, respectively. Thus, the proposed estimators
GPHr and GPH have asymptotic variances close to the optimal values: fer 3600.
Observe that the ML estimates always give smaller MSE than the regression methods.
However, the bias of this estimator is, in general, larger then one produced by.GBH
largen, GPHr, GPHp and ML estimators have similar MSE. It should be noted that the ML
estimator required a lot of computational time and in some cases the simulations stopped
before reaching the 1000 replications foe 3600.

Tables 5—&resent the estimation results when the complete model (1) is considered in
the study for stationary and non-stationary cases.

Observe that overall, estimators GPldnd GPH> have better performance than the
others regression methods, in terms of bias and MSE. It should be noted that the estimators
GPH,,forv=1, ..., [%], are only used for estimatirigjsince its seasonal frequency is away
from zero. For comparison purposes, we also include the estimates produced by the GPH
method suggested Borter-Hudak (1990However, as noted by Porter-Hudak, it should
be expected that this estimator combines the effedbofdD, since these parameters cannot
be identified separately. As shown in the tables, this estimator produces biased estimates
of both long-memory parameters. Howeveryaacreases the bias and the mean squared
error of the estimate dD decreases. Thus, by combining GP&hd GPH 2| the value
of the both parameters may be identified, where gRHprovides the estimate & and
GPHy — GPH;/2) can be used to estimatieFor example, in Table 7 for = 3600 we have
from GPH thatd + D = 0.613 and from GPH, we haveD = 0.398. Consequently, an

estimate fod is d = 0.215.

As previously mentioned, the ML always gives smaller MSE. However, for larte
MSE of the regression methods GPtnd GPH are very close to the ML method. It
should be noted that the ML here is restricted to the stationary case. As far as the authors
know, the asymptotic properties of the ML in the non-stationary case are not established
yet. Hence, this method is not considered in the Tables 7 and 8 where the results of the
non-stationary simulation studies are presented.

The following figures are examples to illustrate empirically the linear relation between the
estimates ofl andD using the regression methods and the ML estimator whed),d=0.1
andD =0.3. Fig. 4gives the scatterplot of the GRthnd GPH (v=0, 1, 2) estimates ofl
andD and the sample autocorrelation. This example illustrates that the estimdtasdd
are highly correlated when using the GPiethod.Fig. 5 gives the scatterplot of the ML
estimates ofl andD. The theoretical and sample autocorrelations between the estimates
are—0.25 and—0.279, respectively. The sample correlation of the GRidtimates is very
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GPHT, n=480, s=4, D=0.3, d=0.1, r=-0.26

GPHyv, v=0, n=480, s=4, D=0.3, d=0.1, r=-0.99
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Fig. 4. Scatterplot of the GPHand GPH estimatesd = 0.1 andD = 0.3 for s = 4 andn = 480 based on 1000

replications.
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Fig. 5. Scatterplot of the ML estimateséf= 0.1 andD = 0.3 for s = 4 andn = 480 based on 1000 replications.

close to the one given by the ML estimates. bef2, the sample correlation is positive due
to the fact that the regression estimates are obtained using the frequencies of the left-side
of the frequencyl = =.
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5. Conclusions

As suggested by the Monte Carlo experiments, two of the estimation methodologies
proposed in this paper namely, GPtand GPH>, seem to perform very well even for
small sample sizes. Consequently, they are reasonable methods to deal with seasonal long-
range dependent data. The methods considered are natural extensions of the one proposed
originally by Geweke and Porter-Hudak (1988 non-seasonal long-memory processes.
The approach proposed Borter-Hudak (1990yvas also considered in our study, but
it showed poor performance. In addition, the methods involving most of the frequencies
yield better estimates than those regression techniques based only on neighborhoods of the
seasonal frequencies. Also, for langethe proposed methods are very competitive when
compared to the maximum-likelihood estimator. Since the results from the simulations are
very encouraging, it would be interesting to study the performance of these estimators for
more general seasonal models and to extend them to the multivariate case.
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