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Abstract

This paper discusses the estimation of fractionally integrated processes with seasonal compo-
nents. In order to estimate the fractional parameters, we propose several estimators obtained from
the regression of the log-periodogram on different bandwidths selected around and/or between the
seasonal frequencies. For comparison purposes, the semi-parametric method introduced in Geweke
and Porter-Hudak (1983) and Porter-Hudak (1990) and the maximum-likelihood estimates (ML) are
also considered. As indicated by the Monte Carlo simulations, the performance of the estimators
proposed is good even for small sample sizes.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The fractionally integrated autoregressive moving average model (ARFIMA) with sea-
sonal component has recently been considered in many works and has been used to de-
scribe a large number of real world cyclical phenomena exhibiting long-range dependence.
For example,Porter-Hudak (1990)has examined monetary aggregates using a seasonal
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differenced process. This model has been also considered byHassler (1994). Both works
have employed the semi-parametric regression of the log-periodogrammethod, cf.Geweke
and Porter-Hudak (1983), for the estimation of the fractional long-memory parameter in the
seasonalARFIMAmodel. The spectral density of a non-seasonalARFIMAprocess has only
one pole at zero frequency.However, someworks have recently proposedanextension of the
ARFIMA process to model time series with long-memory behavior at any given frequency
in [0,�]. This generalization is the Gegenbauer autoregressive moving average (GARMA)
model. The GARMA model was first suggested byHosking (1981)and later studied by
Andel (1986), Gray et al. (1989, 1994)andChung (1996). Other extensions of the GARMA
process are the fractional ARUMA model discussed byGiraitis and Leipus (1995)and the
k-factor GARMA models proposed byWoodward et al. (1998). The ARUMA or k-factor
GARMA models allowk long-memory parameters associated tok frequencies in [0,�]. In
addition,Arteche andRobinson (2000)have introduced the seasonal or cyclical asymmetric
long-memory process and the usual estimation methods, regression of the log-periodogram
and local Whittle are extended to this model.
The main objective of this paper is to propose a number of semi-parametric estimation

methodologies for seasonal long-range-dependent processes and to evaluate their perfor-
mance via Monte Carlo simulations. Like the Geweke and Porter-Hudak method, the pro-
posed techniques are based on the regression of the log-periodogram. However, we consider
a number of different bandwidth selections around the seasonal frequencies as explained
in Section 3. Our Monte Carlo experiments indicate that some of the bandwidth choices
produce very good estimates of the long-memory parameters. For comparison purpose, the
parametric GaussianML estimator, see for example Section 5.3 ofBeran (1994), is included
in the simulation study.
The remaining of this paper is structured as follows. The Section 2 presents the class

of seasonal fractionally integrated processes under consideration in this simulation study.
Section 3 addresses several semi-parametric estimation procedures aswell as themaximum-
likelihood method. Section 4 studies the behavior of the estimation procedures through
Monte Carlo simulation and final remarks are given in Section 5.

2. The model

Let {Xt } be a zero-mean seasonal fractionally integrated process defined as
(1− B)d(1− Bs)DXt = �t (1)

for t =1, . . . , n, whered, D ∈ R, {�t }t∈Z is a white-noise process with zero mean, variance
�2� , B is the usual backshift operator ands is the seasonal period. The process specified by
(1) is the seasonal fractionally integrated processes denoted here by ARFISMA(0, d,0) ×
(0, D,0)s . A more general class of seasonal models can be generated by allowing{�t }
to be an stationary and invertible seasonal ARMA process. This generalized process is
denotedARFISMA(p, d, q)× (P, D, Q)s wherep, q,PandQare the polynomial order of
the non-seasonal and seasonal autoregressive (AR) and moving-average (MA) operators,
respectively. However, for convenience, this paper is restricted to time-series models with
p=q =P =Q=0. Definition (1) is motivated by the works byPeiris and Singh (1996)and
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Hassler (1994). The former discussed the generalARFISMAprocess focusing on prediction
issues and the latter considered model (1) withd = 0 and defined(1 − Bs)D as arigid
filter. Hassler (1994)also presented the flexible ARFISMA model. The flexible model was
also considered inOoms (1995). In this work, the author presented a survey related to
seasonal long-memory process, discussed the estimation and inference of the parameters
and considered some applications.
The spectral density of a non-seasonal ARFIMA model behaves likef (�) ∼ C|�|−2d ,

for � → 0, for some positive constantC, and the autocorrelation betweenXt andXt+k

satisfies�(k) ∼ k2d−1, ask → ∞. When|d| < 1
2 the process is stationary and invertible.

For positived the process is said to have longmemory and,whend=0 ord <0 the process is
said to be short or intermediate memory (antipersistent), respectively. For a detailed review
of these processes see, for example,Beran (1994). Since the seminal work byGeweke
and Porter-Hudak (1983), many estimators of the parameterd have been proposed in the
literatureof long-memory timeseries, see, for exampleReisen (1994),ArtecheandRobinson
(2000)and references therein. A recent empirical investigation of different methods for
estimatingARFIMA(p, d, q)models is given inReisen et al. (2001). Additional references
for parameter estimation in long-memory processes includeMcCoy and Walden (1996),
Jensen (1999),Whitcher (2004)andLopes et al. (2004).
Giraitis and Leipus (1995)have introduced the fractional ARUMA(0, d1, . . . , dr ,0)

noise model with parametersd1, . . . , dr (dj 
= 0, j = 1, . . . , r) and fixed frequencies
0��1< , . . . , < �r �� as a stationary processYt obtained from the solution of the equa-
tion

∇d1,...,dr

�1,...,�r
Yt = �t , (2)

where�t is defined as in Eq. (1),dj are fractional differencing degrees and∇d1,...,dr

�1,...,�r
=∏r

j=1[(1− Bei�j )(1− Be−i�j )]dj . As shown below, model (1) is a particular case of the
fractional ARUMA process defined by (2). For simplicity, assume that the periods is even
and let�v be the seasonal frequency defined as�v = 2�v

s
, for v = 1,2, . . . , s

2. The filter in
Eq. (1) may be written as

(1− B)d(1− Bs)D=(1− B)d(1− B)D(1+ B)D

s
2−1∏
j=1

[(1− Bei�j )(1− Be−i�j )]D

=[(1− Bei0)(1− Be−i0)](d+D)/2[(1− Bei�)(1− Be−i�)]D/2

×
s
2−1∏
j=1

[(1− Bei�j )(1− Be−i�j )]D

=
s
2∏

j=0

[(1− Bei�j )(1− Be−i�j )]dj (3)

with d0 = d+D
2 , � = 0, dj = D for j = 1, ..., s

2 − 1 andd s
2

= D
2 .

Using expression (3) and Theorem 2 ofGiraitis and Leipus (1995), we conclude that
model (1) is anARUMA(0, d+D

2 , D, . . . , D, D
2 ,0) process and it is causal and invertible if
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Fig. 1. Spectral density of the model (1) whend = 0: (a) model ARFISMA(0,0.2,0)4; (b) model
ARFISMA(0,0.2,0)12; (c) model ARFISMA(0,0.2,0)4 and (d) model ARFISMA(0,0.4,0)12.

and only if|d+D| < 1
2, |D| < 1

2. Thus, according to expression (3), the seasonal fractionally
integrated process defined by (1) has a long-memory component ford + D >0, i.e. it has a
pole at zero frequency. Furthermore, model (1) has long-memory seasonal components at
frequencies�v = 2�v

s
, for v = 1,2, . . . , s

2.
Note that forsodd, the expression (3) does not have the term(1+ B). In this situation,

the model (1) is an ARUMA(0, d+D
2 , D, ..., D,0) model.

By allowing d, D ∈ (−1
2,

1
2 ), the spectral density of model (1) displays zeros or poles

at some frequencies in the interval[−�,�]. The spectral density of model (1) is given by

f (�) = �2�
2�

[2 sin(�s/2)]−2D[2 sin(�/2)]−2d (4)

for −�����. Observe that at the seasonal frequencies�v = 2�v/s, v = 0,1, . . . , [s/2],
and forD >0 and/ord >0, f (�) becomes unbounded and behaves as

f

(
� + 2�v

s

)
∼ �2�

2�
|�s|−2D

∣∣∣2 sin
�v

s

∣∣∣−2d
� → 0, (5)

wherev >0. Observe that the expression|2 sin �v
s

|−2d is bounded forv = 1, ..., [s/2]. For
v = 0, f (�) ∼ |�|−2(D+d)C, as� → 0 whereC is a positive constant.
Figs. 1and2 illustrate the behavior of (4) for some values ofD, dands. Fig. 1shows the

symmetric case (d =0). FromFig. 2, we see that there is a strong influence of the fractional
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Fig. 2. Spectral densities of model (1): (a) model ARFISMA(0,0.2,0) × (0,0.4,0)4; (b) model
ARFISMA(0,0.2,0) × (0,0.4,0)12; (c) model ARFISMA(0,0.4,0) × (0,0.2,0)4 and (d) model
ARFISMA(0,0.4,0) × (0,0.2,0)12.

parameterd on the shape of the spectral density, even for those seasonal frequencies far
away from the zero frequency.
A more general class of asymmetric seasonal models was considered inArteche and

Robinson (2000). However, for convenience we restrict our attention to the asymmetric
and symmetric seasonal cases specified by (1). In Section 3, we discuss several estimation
methods ford andD.

3. Estimation methods

3.1. Semiparametric estimates

A multiple linear regression equation is obtained by taking logarithms in expression (4)

logf (�) = log
�2�
2�

− D log[2 sin(�s/2)]2 − d log[2 sin(�/2)]2 (6)

for−�����. Estimates ofdandDmay be obtained by replacingf (�) by the periodogram
I (�) = n−1|∑n

t=1Xtei�t |2 and then approximating regression (6) by
logI (�)�a0 − D log[2 sin(�s/2)]2 − d log[2 sin(�/2)]2 + U, (7)
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wherea0 is a constant andU = ln I (�)
f (�)

− E[ln I (�)
f (�)

]. This is a natural extension of the
non-seasonal method given inGeweke and Porter-Hudak (1983).
Now,assume for simplicity that thenumberof observationsn is divisible bys.Weconsider

the frequencies�v,j = 2�v
s

+ 2�j
n

, v=0,1, . . . , [ s
2]−1, j =1,2, . . . , m, for some choice of

thebandwidthmwhich satisfiesat least1
m

+ m
n

→ 0asn → ∞. Since�must lie in(0,�), we

set�[ s
2 ],j =�− 2�j

n
.Different estimationmethods forDanddmaybeobtainedbyappropriate

choices of the harmonic frequency� : GPHv, for v = 0,1, . . . , [s/2], is the regression
estimator obtained by choosing2�j

n
frequencies on the right-hand side of the seasonal

frequency�v with exception atv= s
2, as defined previously. For example, ifs=4, we obtain

the estimators GPH0,GPH1 and GPH2 by using the frequencies�0,j = 2�j
n

, �1,j = �
2 + 2�j

n

and�2,j =�− 2�j
n
, respectively, forj =1, . . . , m. In order to avoid overlapping frequencies

whenestimatingdandDusingGPHv,wechoosemsuch thatm < n
2s .Observe that form= n

2s ,

�v,m corresponds the frequency�v+�v+1
2 . Consequently, GPH0 uses frequencies�0,1= 2�

n
to

�0, n
2s

= �
s
. Note that for largenwe have�0,j ∈ [0, �

s
]. Similarly, for GPH1�1,j ∈ [�

2 , �
2 + �

s
]

and for GPH2�2,j ∈ [� − �
s
,�].

GPHv allows us to obtain estimates of the fractional parameters around each seasonal
frequency. Hence, if the estimates ofD at each seasonal frequency�v are not significantly
different, wemay assume that the process (1) hasd =0, that is, the process has a rigidmodel
representation (Hassler, 1994). Note that GPH0 corresponds to the method proposed by
Porter-Hudak (1990)to estimatedandD, that is, taking into consideration only frequencies
in a neighborhood of the origin.
TheGPHT method,T for total, calculates the estimates by using all harmonic frequencies

in the regression equation (7). On the other hand, theGPHP method,P for partial, considers
a collection of the Fourier frequencies chosen around the right-hand side of the seasonal
frequencies (left-hand side whenv = [ s

2]). It should be noted that in the case ofd = 0, the
spectral density around each seasonal frequency is symmetric. Hence, theGPHP regression
is analogous to the regression GPHT but with fewer observations to be regressed. Conse-
quently, it is expected that GPHT produces more precise estimates than GPHP method.
Fig. 3 illustrates the region (solid line) where the frequencies are selected from, for each
method described above.

3.2. Maximum-likelihood estimates

Assuming that the process{Xt } is Gaussian, the log-likelihood function may be
expressed as

Ln(�) = −1
2 log detT (f�) − 1

2 X′T (f�)
−1X, (8)

where� = (d, D) is the parameter vector,f� is the spectral density given in (4),X =
(X1, . . . , Xn)

′ andT is the variance–covariance matrix of{Xt },

Tjk = 1

2�

∫ �

−�
f�(�) exp(i�jk)d�,
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Fig. 3. Examples of the region of the spectral density used in each regression estimator (solid line),s = 4: (a)
region of GPHT ; (b) region of GPHP ; (c) region of GPH0; (d) region of GPH1 and (e) region of GPH2.

see for exampleBeran (1994, Section 5.3). The ML estimates are obtained by maximizing
(8), that is,̂�=arg maxLn(�). The asymptotic variance of�̂may be obtained as in Section
5.2 ofTaniguchi and Kakizawa (2000), i.e.,

var[�̂]�4�
n

[∫ �

−�

�
��

f�(�)
�

��′ f�(�)d�
]−1

.

In particular, for an ARFISMA(0, d,0) × (0, D,0)s , this expression reduces to:

var[�̂]�
[
n

(
�4

36
− a2s

)]−1



�2

6
−as

−as

�2

6


 ,

whereas = 1
�

∫ �
−�{log |2 sin(�

2)|}{log |2 sin(s �
2)|}d�. Fors = 4, we have

var[�̂]�1

n

(
0.647 −0.160

−0.160 0.647

)
.
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Hence, corr(d̂, D̂) = −0.247. On the other hand, fors = 12, we have

var[�̂]�1

n

(
0.648 −0.162

−0.162 0.648

)
,

and then corr(d̂, D̂) = −0.250. The computation of the ML is cumbersome, especially for
large sample sizes. In order to make more efficient this method, we used the state space
approach proposed byChan and Palma (1998).

4. Monte Carlo simulation study

In order to assess the finite sample performance of the methods proposed in Section 3,
a number of Monte Carlo experiments were carried out. The simulation results give the
mean and the MSE of the estimation procedures based on 1000 replications. All calcula-
tions were carried out using a Ox program (see for exampleDoornik, 1999) in a AMD
Athlon XP 1800 computer. The performances of the estimates are presented inTables 1–8.
We consider sample sizesn = 240,480 and 3600, and seasonal periodss = 4 and 12. The
models and the values ofD andd are specified in the tables. The best results (smallest bias
or MSE) are in boldface. Simulations with other values ofd andD—not shown here but
available on request—were also considered in the study and the estimators showed similar
behavior. The ARFISMA processes were simulated following the method suggested by

Table 1
Estimates ofD whenD = 0.2 ands = 4

n Stat. Estimators

GPHT GPHP GPH0 GPH1 GPH2 ML

240 Mean 0.1983 0.1955 0.1803 0.2023 0.2039 0.1851
MSE 0.0061 0.0078 0.0310 0.0250 0.0208 0.0038

480 Mean 0.1995 0.1976 0.1864 0.2043 0.2019 0.1962
MSE 0.0030 0.0043 0.0134 0.0131 0.0104 0.0016

3600 Mean 0.1996 0.1980 0.1961 0.1986 0.1992 0.2063
MSE 0.0003 0.0003 0.0011 0.0013 0.0011 0.0003

Table 2
Estimates ofD whenD = 0.4 ands = 4

n Stat. Estimators

GPHT GPHP GPH0 GPH1 GPH2 ML

240 Mean 0.4147 0.4138 0.4099 0.4249 0.4065 0.3902
MSE 0.0074 0.0103 0.0297 0.0229 0.0254 0.0039

480 Mean 0.4064 0.4001 0.4141 0.4020 0.3841 0.4040
MSE 0.0026 0.0034 0.0091 0.0088 0.0133 0.0019

3600 Mean 0.4021 0.4015 0.4011 0.4043 0.3992 0.4286
MSE 0.0003 0.0004 0.0010 0.0012 0.0013 0.0012
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Table 3
Estimates ofD whenD = 0.2 ands = 12

n Stat. Estimators

GPHT GPHP GPH0 GPH1 GPH2

240 Mean 0.2039 0.2090 0.2128 0.1961 0.1998
MSE 0.0106 0.0191 0.1628 0.1065 0.1061

480 Mean 0.2051 0.2088 0.2128 0.2466 0.1592
MSE 0.0039 0.0065 0.0443 0.0420 0.0433

3600 Mean 0.1996 0.1981 0.2024 0.2040 0.1898
MSE 0.0003 0.0006 0.0028 0.0027 0.0048

n Stat. GPH3 GPH4 GPH5 GPH6 ML

240 Mean 0.1757 0.1987 0.2483 0.2315 0.1851
MSE 0.1648 0.1175 0.1140 0.1574 0.0061

480 Mean 0.1943 0.2311 0.1932 0.2249 0.1972
MSE 0.0382 0.0344 0.0672 0.0455 0.0019

3600 Mean 0.2015 0.1907 0.2046 0.1940 0.2056
MSE 0.0042 0.0036 0.0036 0.0051 0.0002

Table 4
Estimates ofD whenD = 0.4 ands = 12

n Stat. Estimators

GPHT GPHP GPH0 GPH1 GPH2

240 Mean 0.4133 0.4146 0.3802 0.4930 0.4245
MSE 0.0086 0.0163 0.1557 0.1575 0.1390

80 Mean 0.4126 0.4195 0.3995 0.4560 0.3965
MSE 0.0039 0.0061 0.0387 0.0384 0.0471

3600 Mean 0.4006 0.3997 0.3943 0.4004 0.3992
MSE 0.0003 0.0006 0.0035 0.0037 0.0031

n Stat. GPH3 GPH4 GPH5 GPH6 ML

240 Mean 0.3891 0.4136 0.4206 0.3811 0.3854
MSE 0.1333 0.1081 0.1180 0.1204 0.0054

480 Mean 0.4020 0.4264 0.4525 0.4032 0.4017
MSE 0.0426 0.0506 0.0444 0.0563 0.0019

3600 Mean 0.3978 0.4068 0.3948 0.4048 0.4234
MSE 0.0041 0.0036 0.0031 0.0036 0.0008

Hosking (1984)with Gaussian noise with unit variance.Tables 1–4display the results
concerned to themodelARFISMA(0, D,0)s and the remaining tablesgive the results related
to the ARFISMA(0, d,0) × (0, D,0)s .
FromTables 1to 4, two of the methods proposed, namely GPHT and GPHP , perform

very well and much better than the GPHv. This estimator gives for eachv similar estimates
and, in practical situations, this may be useful to verify the assumption of a rigid model, that
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Table 5
Estimates ofd andD whend = 0.1,D = 0.3 ands = 4

n Stat. Estimators

GPHT GPHP GPH0 GPH1 GPH2 ML

240 Mean(d) 0.1086 0.1089 0.1194 — — 0.0784
MSE(d) 0.0051 0.0054 1.8774 — — 0.0031
Mean(D) 0.2997 0.2981 0.2998 0.2884 0.3098 0.2858
MSE(D) 0.0076 0.0091 2.3461 0.1886 0.0721 0.0030

480 Mean(d) 0.1053 0.1052 0.2331 — — 0.0831
MSE(d) 0.0020 0.0022 0.8630 — — 0.0019
Mean(D) 0.3032 0.3046 0.1605 0.3147 0.3166 0.2936
MSE(D) 0.0030 0.0040 1.0673 0.0480 0.0262 0.0016

3600 Mean(d) 0.0999 0.1004 0.0819 — — 0.0956
MSE(d) 0.0004 0.0004 0.1039 — — 0.0002
Mean(D) 0.3013 0.3001 0.3169 0.3053 0.2979 0.3021
MSE(D) 0.0003 0.0004 0.1236 0.0042 0.0023 0.0002

Table 6
Estimates ofd andD whend = 0.1,D = 0.3 ands = 12

n Stat. Estimators

GPHT GPHP GPH0 GPH1

240 Mean(d) 0.1108 0.1164 0.3859 —
MSE(d) 0.0075 0.0095 11.996 —
Mean(D) 0.2988 0.3009 −0.0051 0.4453
MSE(D) 0.0107 0.0219 16.131 1.1499

480 Mean(d) 0.1014 0.1025 0.1419 —
MSE(d) 0.0023 0.0033 2.9211 —
Mean(D) 0.3130 0.3077 0.2718 0.3361
MSE(D) 0.0032 0.0063 3.8261 0.2369

3600 Mean(d) 0.0984 0.0980 0.2167 —
MSE(d) 0.00020 0.0003 0.3618 —
Mean(D) 0.3025 0.3011 0.1703 0.2861
MSE(D) 0.0003 0.0006 0.4392 0.0166

n Stat. GPH2 GPH3 GPH4 GPH5 GPH6 ML

240 Mean(d) — — — — — 0.0783
MSE(d) — — — — — 0.0031
Mean(D) 0.0369 0.4335 0.2085 0.2184 0.3353 0.2897
MSE(D) 0.9057 0.8596 1.0174 1.2959 0.5675 0.0032

480 Mean(d) — — — — — 0.0806
MSE(d) — — — — — 0.0016
Mean(D) 0.2428 0.2929 0.2661 0.3054 0.2915 0.2949
MSE(D) 0.3099 0.3045 0.2143 0.3471 0.1038 0.0014

3600 Mean(d) — — — — — 0.0957
MSE(d) — — — — — 0.0002
Mean(D) 0.2908 0.3007 0.3025 0.3002 0.31372 0.3028
MSE(D) 0.0126 0.0163 0.0146 0.0156 0.0083 0.0002
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Table 7
Estimates ofd andD whend = 0.2,D = 0.4 ands = 4

n Stat. Estimators

GPHT GPHP GPH0 GPH1 GPH2

240 Mean(d) 0.206 0.206 0.153 — —
MSE(d) 0.004 0.004 1.791 — —
Mean(D) 0.404 0.402 0.455 0.473 0.437
MSE(D) 0.006 0.009 2.296 0.193 0.061

480 Mean(d) 0.202 0.200 0.121 — —
MSE(d) 0.002 0.003 0.987 — —
Mean(D) 0.407 0.409 0.492 0.443 0.436
MSE(D) 0.003 0.004 1.250 0.074 0.027

3600 Mean(d) 0.201 0.202 0.179 — —
MSE(d) 0.0002 0.0003 0.117 — —
Mean(D) 0.406 0.405 0.434 0.414 0.398
MSE(D) 0.0003 0.0005 0.142 0.005 0.003

Table 8
Estimates ofd andD whend = 0.2,D = 0.4 ands = 12

n Stat. Estimators

GPHT GPHP GPH0 GPH1

240 Mean(d) 0.208 0.211 0.657 —
MSE(d) 0.006 0.008 10.040 —
Mean(D) 0.414 0.410 −0.062 0.394
MSE(D) 0.010 0.017 13.850 0.995

480 Mean(d) 0.204 0.203 0.242 —
MSE(d) 0.003 0.004 3.105 —
Mean(D) 0.403 0.406 0.337 0.421
MSE(D) 0.003 0.005 4.112 0.225

3600 Mean(d) 0.205 0.205 0.133 —
MSE(d) 0.0003 0.0003 0.374 —
Mean(D) 0.405 0.405 0.494 0.405
MSE(D) 0.0003 0.0006 0.485 0.014

n Stat. GPH2 GPH3 GPH4 GPH5 GPH6

240 Mean(d) — — — — —
MSE(d) — — — — —
Mean(D) 0.418 0.483 0.377 0.341 0.379
MSE(D) 0.835 1.093 1.412 1.003 0.437

480 Mean(d) — — — — —
MSE(d) — — — — —
Mean(D) 0.447 0.430 0.441 0.408 0.409
MSE(D) 0.185 0.214 0.303 0.327 0.104

3600 Mean(d) — — — — —
MSE(d) — — — — —
Mean(D) 0.415 0.421 0.394 0.409 0.397
MSE(D) 0.015 0.015 0.017 0.019 0.009
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is,d=0.0. The good behavior of thesemethods is directly related to the fact that the spectral
density is symmetric around all seasonal frequencies (seeFig. 1in the previous section). In
the regression methods, better estimates are obtained from GPHT (smaller bias and MSE)
since this method involves all harmonic frequencies in the regression equation. For small
sample sizes, the MSE of all methods increases withs due to the fact that fewer Fourier
frequencies are involved in the regression equation (compare for example Tables 1 and 2
for n = 240). This effect becomes insignificant asn increases. Note that the approximate
parameter variance based on Gaussian processes withs = 4 are 0.0027,0.0014 and 0.0002
for n = 240,480 and 3600, respectively. Fors = 12 the parameter variances are 0.0025,
0.0013 and 0.0002 forn = 240,480 and 3600, respectively. Thus, the proposed estimators
GPHT and GPHP have asymptotic variances close to the optimal values forn = 3600.
Observe that the ML estimates always give smaller MSE than the regression methods.
However, the bias of this estimator is, in general, larger then one produced by GPHT . For
largen, GPHT , GPHP andML estimators have similar MSE. It should be noted that theML
estimator required a lot of computational time and in some cases the simulations stopped
before reaching the 1000 replications forn = 3600.
Tables 5–8present the estimation results when the complete model (1) is considered in

the study for stationary and non-stationary cases.
Observe that overall, estimators GPHT and GPHP have better performance than the

others regression methods, in terms of bias and MSE. It should be noted that the estimators
GPHv, forv=1, . . . , [ s

2], are only used for estimatingD since its seasonal frequency is away
from zero. For comparison purposes, we also include the estimates produced by the GPH0
method suggested byPorter-Hudak (1990). However, as noted by Porter-Hudak, it should
be expected that this estimator combines the effect ofdandD, since these parameters cannot
be identified separately. As shown in the tables, this estimator produces biased estimates
of both long-memory parameters. However, asv increases the bias and the mean squared
error of the estimate ofD decreases. Thus, by combining GPH0 and GPH[s/2] the value
of the both parameters may be identified, where GPH[s/2] provides the estimate ofD and
GPH0 −GPH[s/2] can be used to estimated. For example, in Table 7 forn = 3600 we have
from GPH0 that d̂ + D̂ = 0.613 and from GPH[s/2] we haveD̂ = 0.398. Consequently, an
estimate ford is d̂ = 0.215.
As previously mentioned, the ML always gives smaller MSE. However, for largen the

MSE of the regression methods GPHT and GPHP are very close to the ML method. It
should be noted that the ML here is restricted to the stationary case. As far as the authors
know, the asymptotic properties of the ML in the non-stationary case are not established
yet. Hence, this method is not considered in the Tables 7 and 8 where the results of the
non-stationary simulation studies are presented.
The following figures are examples to illustrate empirically the linear relation between the

estimates ofdandDusing the regressionmethodsand theMLestimatorwhen (s=4),d=0.1
andD =0.3.Fig. 4gives the scatterplot of the GPHT and GPHv (v =0,1,2) estimates ofd
andD and the sample autocorrelation. This example illustrates that the estimates ofdandD
are highly correlated when using the GPHv method.Fig. 5gives the scatterplot of the ML
estimates ofd andD. The theoretical and sample autocorrelations between the estimates
are−0.25 and−0.279, respectively. The sample correlation of the GPHT estimates is very
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Fig. 4. Scatterplot of the GPHT and GPHv estimates,d = 0.1 andD = 0.3 for s = 4 andn = 480 based on 1000
replications.
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Fig. 5. Scatterplot of the ML estimates ofd = 0.1 andD = 0.3 for s = 4 andn = 480 based on 1000 replications.

close to the one given by the ML estimates. Forv =2, the sample correlation is positive due
to the fact that the regression estimates are obtained using the frequencies of the left-side
of the frequency� = �.
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5. Conclusions

As suggested by the Monte Carlo experiments, two of the estimation methodologies
proposed in this paper namely, GPHT and GPHP , seem to perform very well even for
small sample sizes. Consequently, they are reasonable methods to deal with seasonal long-
range dependent data. The methods considered are natural extensions of the one proposed
originally byGeweke and Porter-Hudak (1983)for non-seasonal long-memory processes.
The approach proposed byPorter-Hudak (1990)was also considered in our study, but
it showed poor performance. In addition, the methods involving most of the frequencies
yield better estimates than those regression techniques based only on neighborhoods of the
seasonal frequencies. Also, for largen, the proposed methods are very competitive when
compared to the maximum-likelihood estimator. Since the results from the simulations are
very encouraging, it would be interesting to study the performance of these estimators for
more general seasonal models and to extend them to the multivariate case.
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