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This paper discusses extensions of the popular methods proposed by Geweke and Porter-Hudak
[Geweke, J. and Porter-Hudak, S., 1983, The estimation and application of long memory times series
models. Journal of Time Series Analysis, 4(4), 221–238.] and Fox and Taqqu [Fox, R. and Taqqu, M.S.,
1986, Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time
series. Annals of Statistics, 14, 517–532.] for estimating the long-memory parameter of autoregressive
fractionally integrated moving average models to the estimation of long-range dependent models with
seasonal components. The proposed estimates are obtained from a selection of harmonic frequencies
chosen between the seasonal frequencies. The maximum likelihood method given in Beran [Beran, J.,
1994, Statistic for Long-Memory Processes (New York: Chapman & Hall).] and the semi-parametric
approaches introduced by Arteche and Robinson [Arteche, J. and Robinson, P.M., 2000, Semipara-
metric inference in seasonal and cyclical long memory processes. Journal of Time Series Analysis,
21(1), 1–25.] are also considered in the study. Our finite sample Monte Carlo investigations indicate
that the proposed methods perform well and can be used as alternative estimating procedures when
the data display both long-memory and cyclical behavior.

Keywords: Fractional differencing; Long-memory; Periodogram regression; Seasonality; Whittle
maximum likelihood procedure
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1. Introduction

Since their introduction by Granger and Joyeux [1] and Hosking [2], autoregressive fractionally
integrated moving average (ARFIMA) processes have become very popular for modeling
time series with long-memory behavior. A time series with this property has a slow and
hyperbolically declining autocorrelation function or, equivalently, an infinite spectrum at zero
frequency. A number of applied works have been published to illustrate the usefulness of
ARFIMA models in different areas such as economy, hydrology, physics [see, e.g., ref. [3]
and references therein]. Moreover, recent books on time series analysis and econometrics have
considered the ARFIMA model as one of their subjects, cf. Mills [4], Tsay [5] and Chan [6],
among others.
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Since the 1980s, a number of estimators have been proposed for estimating the parameters
of stationary and non-stationary ARFIMA processes. Most of them belong to either the semi-
parametric or the parametric class. One of the most popular estimations methods in the first
class is due to Geweke and Porter-Hudak [7] and it is based on the regression of the logarithm
of the periodogram. In the second class, we may refer to the maximum likelihood methods
proposed by Sowell [8] and Fox and Taqqu [9]. There are many works comparing and applying
different estimators in the ARFIMA context including Hurvich and Ray [10], Velasco [11],
Robinson [12], Reisen [13], Reisen et al. [14, 15] and Lopes et al. [16], among others.

The methodology for modeling time series with long-memory behavior has been recently
extended to long-memory time series with seasonal components. Recent contributions
related to the seasonal ARFIMA model (hereafter denoted by ARFISMA model) are Porter-
Hudak [17], Hassler [18], Gray et al. [19, 20], Giraitis and Leipus [21], Woodward et al. [22],
Arteche and Robinson [23] and Reisen et al. [24], among others.

The second order structure of seasonal long-memory time series is similar to the ARFIMA
process, in the sense that the dependence between observations decay very slowly. However,
the spectral density of an ARFIMA model has only one pole at zero frequency, whereas the
spectral density of an ARFISMA process has singularities at the origin and at each seasonal
frequency.

The main purpose of this work is to assess and compare the finite sample performance
of several estimation methods in the context of long-memory time series exhibiting periodic
behavior. As introduced in the following section, the process considered in this study is a par-
ticular case of the ARUMA model with two fractional memory parameters, defined in Giraitis
and Leipus [21]. This result is shown in Lemma 1 of section 2. This paper continues a previous
work by the authors, see ref. [24], dealing with the estimation of ARFISMA processes using
modified forms of the Geweke and Porter-Hudak [7] method and the maximum likelihood
estimator. This paper includes, in addition, the application of the parametric method proposed
by Fox and Taqqu [9] to estimate ARFISMA models. The estimates of both the proposed
methods are obtained from the evaluation of the periodogram at a number of harmonic fre-
quencies chosen between the seasonal frequencies. The proposed estimation methodologies
are compared with the semiparametric approaches proposed by Arteche and Robinson [23]
and the maximum likelihood method [see, e.g., section 5.3 of ref. [25]].

This paper is organized as follows. Section 2 discusses the seasonal long-memory model
analyzed and the estimation procedures under study. Section 3 presents the results from a com-
parative Monte Carlo simulation analysis of the finite sample performance of these estimates.
Final remarks are given in section 4.

2. Model and estimation methods

Let {Xt } be a zero-mean ARFISMA(p, d , q)×(P , D, Q)s process defined by

ϕ(Bs)φ(B)(1 − B)d(1 − Bs)DXt = θ(B)�(Bs)εt , (1)

where d and D are real values, B is the lag operator, s is the seasonal period, �(B) = 1 −
φ1B − · · · − φpBp, �(B) = 1 − θ1B − · · · − θqB

q , ϕ(Bs) = 1 − ϕ1B
s − ϕ2sB

2s − · · · −
ϕPsB

Ps and �(Bs) = 1 − �1B
s − �2sB

2s − · · · − �QsB
Qs are polynomials of orders p,

q, P , Q, respectively, with roots outside of the unit circle and {εt } is a Gaussian white noise
process with zero-mean and variance σ 2

ε . The fractional s difference is a generalization of the
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binomial expression (1 − B)d and can be written as,

(1 − Bs)D = 1 − DBs − D(1 − D)B2s

2! − D(1 − D)(2 − D)B3s

3! − · · ·

For simplicity, in this paper, we restrict our attention to the case where p = q = P = Q = 0.
In this situation, {Xt } is an ARFISMA(0, d , 0)×(0, D, 0)s . When d = 0, {Xt } is a rigid model
in the terminology of Hassler [18].

Observe that Giraitis and Leipus [21] introduced the fractional autoregressive unit circle
moving averageARUMA(0, d1, . . . , dr , 0) model with memory parameters d1, . . . , dr (dj �= 0,
j = 1, . . . , r) and fixed frequencies 0 ≤ λ1 < · · · < λr ≤ π as a stationary process Yt

obtained from the solution of the equation

∇d1,...,dr

λ1,...,λr
Yt = εt , (2)

where εt is defined as previously, the parameters dj are fractional degrees and ∇d1,...,dr

λ1,...,λr
=∏r

j=1[(1 − Beiλj )(1 − Be−iλj )]dj .
Assume for simplicity that the period s is even. Let λv be the seasonal frequency defined

as λv = 2πv/s, for v = 1, 2, . . . , s/2. The following result shows that the ARFISMA(0, d,
0) × (0, D, 0)s model can be written as an ARUMA process specified by equation (2) and also
gives conditions on the parameters to assure causality and invertibility.

LEMMA 1 Let Xt be defined as an ARFISMA(0, d, 0) × (0, D, 0)s model. Then, Xt

is an ARUMA(0, d0, dj , . . . , ds/2, 0) process with d0 = (d + D)/2 (λ0 = 0), dj = D for
j = 1, 2, . . . , (s/2) − 1 and ds/2 = (D/2)(λs/2 = π) and it is causal and invertible if and
only if |d + D| < 1/2, |D| < 1/2.

Proof The filter in model (1) may be written as,

(1 − B)d(1 − Bs)D = (1 − B)d(1 − B)D(1 + B)D
(s/2)−1∏

j=1

[(1 − Beiλj )(1 − Be−iλj )]D

= [(1 − Bei0)(1 − Be−i0)](d+D)/2[(1 − Beiπ )(1 − Be−iπ )]D/2

×
(s/2)−1∏

j=1

[(1 − Beiλj )]D

=
s/2∏
j=0

[(1 − Beiλj )(1 − Be−iλj )]dj . (3)

�

Thus, we conclude from Theorem 2 of Giraitis and Leipus [23] that equation (3) is the filter of an
ARUMA(0, (d + 2)/2, D, . . . , D/2, 0) process. The conditions for causality and invertibility
follow immediately from Theorem 1 of Giraitis and Leipus [21].

Note that for s odd the proof is similar, omitting the term (1 + B) in equation (3). In this
situation, the ARFISMA(0, d , 0) × (0, D, 0)s model is an ARUMA(0, (d + D)/2, D, . . ., 0)
model.
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The spectral density of an ARFISMA(0, d , 0) × (0, D, 0)s process is given by

f (λ) = σ 2
ε

2π

[
4−D sin−2D

(
λs

2

)] [
4−d sin−2d

(
λ

2

)]
(4)

for 0 ≤ λ ≤ π . Thus, by allowing d and D to take positive and negative values, the spectral
density of the ARFISMA(0, d , 0)×(0, D, 0)s may display zeroes or poles at some frequencies
in the interval (0, π).

Observe that at the seasonal frequencies λv = 2πv/s, v = 0, 1, . . . , [s/2], and for D > 0
and/or d > 0, the spectral density of the process f (λ) becomes unbounded. Figures 1 and 2
illustrate the behavior of the spectral density for some values of D and d.

2.1 Estimation methods

In this section, we discuss briefly the application of several methods to the estimation of
long-memory seasonal time series.

Figure 1. Spectral density of (a) Model ARFISMA(0, 0.2, 0)4, (b) Model ARFISMA(0, 0.2, 0)12, (c) Model
ARFISMA(0, 0.4, 0)4 and (d) Model ARFISMA(0, 0.4, 0)12.



Monte Carlo study 309

Figure 2. Spectral density of (a) Model ARFISMA(0, 0.2, 0) × (0, 0.4, 0)4, (b) Model ARFISMA(0, 0.2, 0) ×
(0, 0.4, 0)12, (c) Model ARFISMA(0, 0.4, 0) × (0, 0.2, 0)4 and (d) Model ARFISMA(0, 0.4, 0) × (0, 0.2, 0)12.

2.1.1 Regression methods. Let I (λ) = n−1| ∑n
t=1 Xteiλt |2 be the periodogram func-

tion of the process. A multilinear regression equation is obtained by taking logarithms in
expression (4),

log f (λ) = log
σ 2

ε

2π
− D log

[
2 sin

(
λs

2

)]2

− d log

[
2 sin

(
λ

2

)]
, (5)

for 0 ≤ λ ≤ π . Estimates of d and D may be obtained by replacing f (λ) by I (λ) and then
approximating the regression (5) by

log I (λ) ∼= a0 − D log

[
2 sin

(
λs

2

)]2

− d log

[
2 sin

(
λ

2

)]2

+ Uλ, (6)

where a0 is a constant and Uλ = ln I (λ)/f (λ) − E[ln I (λ)/f (λ)].
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Assume for simplicity that the number of observations n of {Xt } is divisible by s. We
consider the frequencies

λv,j = 2πv

s
+ 2πj

n
, v = 0, 1, . . . ,

[ s

2

]
− 1, j = 1, 2, . . . , m,

for some choice of the bandwidth m which satisfies the condition (1/m) + (m/n) → 0 as n

goes to ∞. Since λ must lie in the interval (0, π ), we set λ[s/2],j = π − (2πj/n). Different
estimation methods for D and d may be obtained by appropriate choices of the harmonic
frequency λ. Basically, the two regression estimators considered in this study are distinguished
by the choice of the bandwidth m when regressing log(I (λv,j )) on log[2 sin(λv,j s/2)]2 and
log[2 sin(λv,j /2)]2. The regression methods proposed here are

(1) The estimator d̂T , T for total, produces the estimates by using all harmonic frequencies in
the regression equation, that is, the regression is built from

λv,j = 2πv

s
+ 2πj

n
, v = 0, 1, . . . ,

[ s

2

]
− 1, j = 1, 2, . . . , m and m =

[n

s

]
− 1.

(2) Another estimator is the d̂P , P for partial, which is a particular case of d̂T method. d̂P

considers a collection of the harmonic frequencies chosen around the right-hand side of
the seasonal frequencies (left-hand side when v = [s/2]) and m = [n/2s] − 1. Observe
that m = n/2s, λv,m corresponds to half the distance between the seasonal frequencies λv

and λv+1. It should be noted that in the rigid model (d = 0), the spectral density around
each seasonal frequency is symmetric. Hence, the regression estimator d̂P is similar to the
regression d̂T method but with fewer observations to be regressed. Consequently, it could
be expected that d̂T produce slightly more precise estimates than d̂P method. On the other
hand, d̂P is computationally faster than d̂T .

Reisen et al. [24] also considered the regression equation restricted to a neighborhood of
each seasonal frequency. Thus, regression estimates of the parameters can be obtained for
each value of λv . However, this approach is omitted here because, as reported in that study,
these estimators performed very poorly in finite sample simulations.

2.1.2 Fox–Taqqu method. This estimator, hereafter denoted by d̂W, is a parametric pro-
cedure due to Fox and Taqqu [9] and Whittle [26] for Gaussian long-memory processes and
it is based on the periodogram and the spectral density functions. The subscript W stands for
Whittle, who proposed the following likelihood function for parameter estimation in the con-
text of short-memory time series. This estimator is obtained by using all harmonic frequencies
between the seasonal frequencies as in (d̂T ). It is calculated by minimizing the approximate
Gaussian log-likelihood

LW(θ) = 1

2n

∑
j

{
ln fθ (λj ) + I (λj )

fθ (λj )

}
, (7)

where fθ is the spectral density,

θ = (d, D, φ1, . . . , φp, θ1, . . . , θq, ϕ1, . . . , ϕP , �1, . . . , �Q, σ 2
ε ),

denotes the vector of unknown parameters and
∑

j is sum over j = 1, . . . , n − 1, excluding
those values λj coinciding with the seasonal frequencies. In this work, the spectral density fθ

is specified by equation (4).
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2.1.3 The semi-parametric d̂v and d̂Q methods. The semi-parametric estimation meth-
ods proposed in Arteche and Robinson [23] are denoted in this work by d̂v for v = 0, . . . , s/2
and d̂Q. These estimators correspond to methods described in section 3 and 4 of Arteche
and Robinson [23], respectively. As these estimates have been well described in the previous
reference, we omit the formulas here.

The bandwidth, m, used by these estimators is the same as the one chosen for the estimate
d̂P , i.e., m = [n/2s] − 1. Note that for the frequencies in (0, π ), the d̂v estimators use the
information in both sides of the seasonal frequency λv . Thus, d̂v is the mean value of the left
and right log-regression estimators. For more details about this technique, see equation (3.4)
of ref. [23].

2.1.4 Maximum likelihood method. The maximum likelihood estimator (d̂ML) is
obtained by maximizing

Ln(θ) = −1

2
log det T (fθ ) − 1

2
X′T (fθ )

−1X, (8)

where θ = (d, D) is the parameter vector, fθ is the spectral density, X = (x1, . . . , Xn)
′ and

T (fθ ) is the variance–covariance matrix of the Gaussian process {Xt }. A detailed revision of
this approach is found in section 5.3 of ref. [25].

3. Monte Carlo simulation study

In this section, we study the finite sample performance of the methods discussed in section 2
via Monte Carlo experiments. We carried out several simulations for different combinations
of parameters, seasonal period and sample sizes. All the results shown in this section are based
on 1000 replications.

The sample mean and the mean squared error (MSE) are presented in tables 1–6. The
calculations were carried out by means of an Ox program in anAMDAthlon XP 1800 computer.
We considered sample sizes n = 240, n = 480 and n = 3600, and seasonal periods s = 4 and
s = 12. The models and the values of the long-memory parameters D and d are specified in
each table. Simulations with other values of d and D gave similar results and they are available
upon request. The ARFISMA processes were simulated following the method suggested by
Hosking [27] with Gaussian noise with unit variance. Tables 1–3 present the results concerned
to the rigid model ARFISMA(0, D, 0)s and the remaining tables display the results related to
the ARFISMA(0, d , 0) × (0, D, 0)s process.

3.1 Estimation of the ARFISMA(0, D, 0)s model

It can be seen from tables 1–3 that the methods d̂T and d̂P have good performance (small bias
and MSE), even for small sample size. It seems that better estimates are obtained from d̂T

than d̂P , as the former method involves all harmonic frequencies in the regression equation.
The Whittle estimator d̂W produces larger bias than d̂T and d̂P . However, as n increases
the bias of d̂W decreases substantially, and these three methods become very competitive.
The performance of these methods is directly related to the fact that the spectral density is
symmetric around all seasonal frequencies (figure 1).

Comparing the two parametric methods, d̂W and d̂ML, the former seems to be more biased.
However, their results are fairly similar for large n.
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Table 1. Estimates of D when D = 0.2 and s = 4.

Estimators

n Statistics d̂T d̂P d̂0 d̂1

240 Mean 0.2003 0.2034 0.2225 0.1962
MSE 0.0059 0.0079 0.0321 0.0110

480 Mean 0.2026 0.2002 0.2011 0.2013
MSE 0.0030 0.0034 0.0136 0.0050

3600 Mean 0.1970 0.1981 0.1989 0.1952
MSE 0.0002 0.0003 0.0012 0.0005

n Statistics d̂2 d̂Q d̂W d̂ML
240 Mean 0.1845 0.1505 0.1644 0.1847

MSE 0.0230 0.0212 0.0033 0.0039
480 Mean 0.2038 0.1691 0.1780 0.1964

MSE 0.0119 0.0092 0.0016 0.0016
3600 Mean 0.1988 0.1930 0.1944 0.2067

MSE 0.0010 0.0009 0.0002 0.0003

Table 2. Estimates of D when D = 0.2 and s = 4.

Estimators

n Statistics d̂T d̂P d̂0 d̂1

240 Mean 0.4047 0.4087 0.4301 0.3983
MSE 0.0054 0.0074 0.0300 0.0112

480 Mean 0.4063 0.4039 0.4044 0.4045
MSE 0.0031 0.0034 0.0153 0.0052

3600 Mean 0.3988 0.3999 0.4006 0.3971
MSE 0.0002 0.0003 0.0013 0.0005

n Statistics d̂2 d̂Q d̂W d̂ML
240 Mean 0.3902 0.3559 0.3470 0.3891

MSE 0.0235 0.0204 0.0065 0.0040
480 Mean 0.4084 0.3751 0.3744 0.4038

MSE 0.0123 0.0093 0.0022 0.0018
3600 Mean 0.4005 0.3948 0.3951 0.4281

MSE 0.0011 0.0009 0.0002 0.0011

Table 3. Estimates of D when D = 0.2 and s = 12.

Estimators

n Statistics d̂T d̂P d̂0 d̂1 d̂2 d̂3

240 Mean 0.1908 0.1966 0.1864 0.1737 0.2236 0.1875
MSE 0.0093 0.0165 0.1532 0.0685 0.0672 0.0625

480 Mean 0.2005 0.1972 0.1597 0.2121 0.1900 0.1946
MSE 0.0035 0.0062 0.0586 0.0211 0.0278 0.0214

3600 Mean 0.1979 0.1994 0.2000 0.1948 0.1951 0.1953
MSE 0.0003 0.0005 0.0045 0.0020 0.0020 0.0020

n Statistics d̂4 d̂5 d̂6 d̂Q d̂W d̂ML
240 Mean 0.1749 0.2081 0.1393 −0.0391 0.1290 0.1848

MSE 0.0748 0.0598 0.1818 0.1402 0.0058 0.0060
480 Mean 0.2012 0.2214 0.1898 0.0593 0.1507 0.1965

MSE 0.0186 0.0195 0.0403 0.0587 0.0031 0.0020
3600 Mean 0.1998 0.2013 0.2021 0.1806 0.1903 0.2055

MSE 0.0022 0.0020 0.0029 0.0032 0.0003 0.0002
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On the other hand, the semi-parametric methods d̂v (v = 0, 1, . . . , s/2) and d̂Q produce
estimates that become competitive with the regression methods d̂T and d̂P for large sample size.

For all estimators, the bias is more noticeable when s = 12 but decreases as n increases
(table 3). For small sample sizes, the MSE of all the regression methods increases with s

beause of the fact that fewer number of harmonic frequencies are used. This effect becomes
insignificant as n increases. Note that the asymptotic variance of the parameters for long-
memory Gaussian processes is 
(θ)−1/n where 
(θ) is the Fisher information matrix given
by, cf. Dahlhaus [28]:


(θ) = 1

4π

∫ π

−π

[∇ log f (λ)][∇ log f (λ)]′dλ. (9)

For the ARFIMA(0, D, 0)s model, the asymptotic variance of D̂ does not depend on the
seasonal period s nor the value of D. This asymptotic variance is ∼ 0.0025, 0.0013 and
0.0002 for n = 240, n = 480 and n = 3600, respectively. Thus, the proposed estimators d̂T

and d̂P have asymptotic variances close to the optimal values for n = 3600.

3.2 Estimation of the ARFISMA(0, d, 0) × (0, D, 0)s model

Tables 4–6 display the estimation results when d is also included in the model and the process
is not restricted only to the stationary conditions. That is, we also consider the case

Table 4. Estimates of d and D when d = 0.1, D = 0.3 and s = 4.

Estimators

n Statistics d̂T d̂P d̂0 d̂1

240 Meand 0.1051 0.1042 0.1127 –
MSE 0.0054 0.0054 2.1947 –
MeanD 0.3010 0.3040 0.3167 0.2953
MSE 0.0063 0.0084 2.8071 0.0748
corr(d̂, D̂) −0.2773 −0.2717 −0.9948 –

480 Meand 0.0960 0.0970 0.2358 –
MSE 0.0029 0.0031 1.3140 –
MeanD 0.3057 0.3036 0.1544 0.2999
MSE 0.0033 0.0041 1.6534 0.0198
corr(d̂, D̂) −0.2911 −0.3849 −0.9953 –

3600 Meand 0.103 0.10256 0.1036 –
MSE 0.0003 0.0003 0.1153 –
MeanD 0.2973 0.2982 0.2968 0.2992
MSE 0.0003 0.0004 0.1404 0.0018
corr(d̂, D̂) −0.3194 −0.3187 −0.9954 –

n Statistics d̂2 d̂W d̂ML
240 Meand – 0.0970 0.0792

MSE – 0.0034 0.0030
MeanD 0.2894 0.2495 0.2869
MSE 0.0537 0.0059 0.0029
corr(d̂, D̂) – −0.2564 −0.2736

480 Meand – 0.0990 0.0840
MSE – 0.0017 0.0018
MeanD 0.2908 0.2727 0.2931
MSE 0.0245 0.0022 0.0016
corr(d̂, D̂) – −0.2696 −0.2803

3600 Meand – 0.10158 0.0958
MSE – 0.0002 0.0002
MeanD 0.2956 0.2940 0.3023
MSE 0.0017 0.0002 0.0002
corr(d̂, D̂) – −0.3003 −0.2906
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|d + D| > 1/2. Apart from the mean and the MSE of the estimates, these tables also show the
sample correlation between the estimates of d and D for the estimators d̂T , d̂P , d̂W and d̂ML.
Because of the large bias produced by d̂Q, this method was omitted in these tables. Besides,
the use of d̂ML is only restricted to the stationary case. It should be noted that the estimators
d̂v , for v = 1, . . . , [s/2], are used for estimating D only as its seasonal frequency is away
from zero. The estimator d̂v combines the effect of d and D, as these parameters cannot be
identified separately, see for example, the high value of sample correlation between the esti-
mates produced by d̂0 in table 5. This estimator produces biased estimates of both memory
parameters and displays a substantially large MSE. However, as v increases the bias and the
MSE of the estimate of D decreases.

Observe that overall, estimators d̂T and d̂P display a good performance. Assuming that the
process is Gaussian, Reisen et al. [24] obtained an asymptotic formula for correlation of the
estimates of d and D. For s = 4, corr(d̂ , D̂)= −0.247 and for s = 12, corr(d̂, D̂)= −0.083.
The sample correlations of the proposed estimators are very close to the one given by the ML
estimate. For small sample size, the parametric estimators, d̂W and d̂ML, have larger bias than
the semi-parametric methods, d̂T and d̂P (table 4).

For the non-stationary case (table 5), the results are fairly similar to the previous cases. The
estimator d̂T seems to have the best results, and for large n, the estimators d̂T , d̂P and d̂W yield
very close results.

Table 5. Estimates of d and D when d = 0.2, D = 0.4 and s = 4.

Estimators

n Statistics d̂T d̂P d̂0

240 Meand 0.2152 0.2138 0.1564
MSE 0.0053 0.0052 2.2226
MeanD 0.4043 0.4090 0.4991
MSE 0.0061 0.0080 2.8466
corr(d̂, D̂) −0.3446 −0.3028 −0.9954

480 Meand 0.2056 0.2066 0.3661
MSE 0.0032 0.0035 1.3501
MeanD 0.4078 0.4054 0.2350
MSE 0.0033 0.0041 1.6973
corr(d̂, D̂) −0.2378 −0.3205 −0.9950

3600 Meand 0.20499 0.20452 0.1036
MSE 0.0004 0.0004 0.1153
MeanD 0.3989 0.3999 0.4184
MSE 0.0003 0.0004 0.1380
corr(d̂, D̂) −0.2684 −0.2809 −0.9953

n Statistics d̂1 d̂2 d̂W
240 Meand – – 0.2064

MSE – – 0.0038
MeanD 0.4025 0.3925 0.3442
MSE 0.0666 0.0521 0.0073
corr(d̂, D̂) – – −0.3113

480 Meand – – 0.2077
MSE – – 0.0021
MeanD 0.4052 0.3960 0.3724
MSE 0.0197 0.0257 0.0024
corr(d̂, D̂) – – −0.2521

3600 Meand c – 0.20421
MSE – – 0.0002
MeanD 0.4012 0.3966 0.3953
MSE 0.0018 0.0018 0.0002
corr(d̂, D̂) – – −0.2820
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Table 6. Estimates of d and D when d = 0.1, D = 0.3 and s = 12.

Estimators

n Statistics d̂T d̂P d̂0 d̂1 d̂2 d̂3

240 Meand 0.1038 0.1107 0.0003 – – –
MSE 0.0053 0.0075 7.5976 – – –
MeanD 0.2931 0.2974 0.4078 0.2604 0.2821 0.2771
MSE 0.0092 0.0161 10.2740 0.4123 0.3588 0.4472
corr(d̂, D̂) −0.0673 −0.0362 −0.9928 – – –

480 Meand 0.0958 0.0955 0.2611 – – –
MSE 0.0026 0.0038 4.4582 – – –
MeanD 0.3038 0.3016 0.0823 0.3495 0.2426 0.3259
MSE 0.0037 0.0066 5.9931 0.1037 0.1164 0.1270
corr(d̂, D̂) −0.0623 −0.1443 −0.9944 – – –

3600 Meand 0.1023 0.1006 0.0728 – – –
MSE 0.0003 0.0003 0.3517 – – –
MeanD 0.2991 0.3006 0.3334 0.2873 0.2907 0.3055
MSE 0.0003 0.0005 0.4195 0.0056 0.0052 0.0062
corr(d̂, D̂) −0.1061 −0.1128 −0.9946 – – –

n Statistics d̂4 d̂5 d̂6 d̂W d̂ML
240 Meand – – – 0.0920 0.0792

MSE – – – 0.0034 0.0030
MeanD 0.3446 0.4316 0.20516 0.1808 0.2904
MSE 0.3884 0.4735 0.52177 0.0154 0.0032
corr(d̂, D̂) – – – 0.0634 −0.1525

480 Meand – – – 0.0963 0.0864
MSE – – – 0.0016 0.0016
MeanD 0.2901 0.3313 0.29617 0.2276 0.2951
MSE 0.1102 0.1096 0.12614 0.0064 0.0013
corr(d̂, D̂) – – – 0.0029 −0.0668

3600 Meand – – – 0.1010 0.0959
MSE – – – 0.0002 0.0002
MeanD 0.3177 0.3126 0.30844 0.2888 0.3027
MSE 0.0067 0.0063 0.00851 0.0003 0.0002
corr(d̂, D̂) – – – −0.0788 −0.0906

With the aim of investigating the effect of s on the estimates of both memory parameters
and fixed sample size n, one stationary case was simulated and it is presented in table 6.
From this investigation, the estimators d̂T and d̂P seem to produce very good estimates. For
large sample size, these two periodogram-based estimators and the parametric estimators are
very competitive.

4. Conclusions

Our empirical Monte Carlo investigation indicates that the two estimators proposed in this
work, namely, d̂T and d̂P perform well even for small sample sizes. Consequently, they are
reasonable methods for dealing with seasonal long-range dependent data. These two regression
methods proposed are natural extensions of the one proposed originally by Geweke and Porter-
Hudak [7] for non-seasonal long-memory processes. These periodogram-based methods have
the advantage that they are not only restricted to the stationary case but they can also be
used for seasonal non-stationary ARFIMA model. The regression methods d̂T and d̂P can be
easily implemented. However, the Whittle estimator d̂W requires the implementation of a high
precision numerical procedure in order to minimize the quasi-likelihood function (7). Finally,
in this work, we also compared the finite sample performance of the periodogram-based
methods with the semi-parametric methodology proposed by Arteche and Robinson [23] and
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the maximum likelihood approach. Other estimation methods of the long-memory parameter
such as that given in Reisen [13] are still under research by the first author in the context of
seasonal unit root and long-memory processes.
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