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a b s t r a c t

This paper proposes a new minimum distance methodology for the estimation of ARFIMA
processes with Gaussian and non-Gaussian errors. The main advantage of this method is
that it allows for a computationally efficient estimation when the long-memory parameter
is in the interval d ∈ (− 1

2 ,
1
2 ). Previous minimum distance estimation techniques are

usually limited to the range d ∈ (− 1
2 ,

1
4 ), leaving outside the very important case of strong

long memory with d ∈ [
1
4 ,

1
2 ). It is shown that the new estimator satisfies a central limit

theorem andMonte Carlo experiments indicate that the proposed estimator performs very
well even for small sample sizes. The methodology is illustrated with three applications.
The first two examples involve real-life time series while the third application illustrates
that the proposed methodology is a sound alternative for dealing with incomplete time
series.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Long-memory time series are characterized by significant autocorrelations at large lags. One of the most well known
models for dealing with this type of data is the autoregressive fractionally integrated moving average (ARFIMA) processes
proposed by Granger and Joyeux (1980) and Hosking (1981). These processes have been widely used for modeling long-
range dependence; see for example Doukhan et al. (2003), Bhardwaj and Swanson (2006) and Palma (2007), among others.

In recent years, the problem of estimating long-memory models has been extensively discussed. For Gaussian processes,
two exact maximum likelihood estimation algorithms have been proposed. The first approach, proposed by Sowell (1992),
is computationally demanding and could be numerically unstable for certain values of the Hurst parameter. However, this
method can be improved by using appropriate numerical devices, such as those discussed by Doornik and Ooms (2003). The
second method is based on a state-space representation of the process and the estimation is carried out by Kalman filters.
This approach, discussed by Chan and Palma (1998) allows for the treatment of missing data. Furthermore, several other
approximate likelihoodmethods have been proposed in the literature, including Haslett and Raftery (1989) and Cheang and
Reinsel (2003) in the time domain, and many semiparametric estimators in the frequency domain. For an account of these
methodologies, see Robinson (1995) and Henry (2001) for estimation of nonlinear long-memory processes, and Liseo et al.
(2001) for Bayesian estimation techniques.

Tieslau et al. (1996) proposed the so-calledminimum distance estimator (MDE) as an alternative for estimating fractional
noise processes; see their definition in the next section. The MDE method is based on the minimization of the distance
between sample andpopulation autocorrelations. An advantage of this technique over other approaches is its high numerical
efficiency. However, a disadvantage of this MDE technique is that the estimate of the long-memory parameter d turns out to
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be consistent and asymptotically normal only for d ∈ (− 1
2 ,

1
4 ). Therefore, this approach has limited application in practice

because it is not known a priori whether d belongs to (− 1
2 ,

1
4 ) or [

1
4 ,

1
2 ).

In order to obtain an asymptotically normal estimator of the long-memory parameter d for the entire region of
stationarity, Mayoral (2007) proposed a MDE procedure based on the squared residuals obtained after filtering a
series through an ARFIMA model. This idea was later employed by Kouamé and Hili (2008) for estimating Gegenbauer
autoregressive moving average (GARMA) processes. Additionally, autocorrelations of squared residuals were considered
by Baillie and Chung (2001) for obtaining minimum distance estimators of GARCH models.

Instead of using squared observations or squared residuals, in this paper we propose a new MDE method based on the
fractional filtering of the series. Themain features of these estimators, calledMDEFF hereafter, can be summarized as follows.
They are easy to calculate and numerically efficient since the computation of the MDEFF estimates is based on a reduced
number of sample autocorrelations. This MDEFF approach allows for the estimation of Gaussian and non-Gaussian ARFIMA
processes since it does not depend on the distribution of the time series data. The estimator of d is not affected by the
estimation of the level parameter µ since it is based only on the sample autocorrelation function. As shown by Cheung and
Diebold (1994), this does not occur for the exact maximum likelihood estimator (MLE) implemented by Sowell (1992). On
the other hand, several Monte Carlo experiments evidence that the MDEFF method displays small bias and its precision,
measured in terms of the mean squared error, is very good. For some ARFIMA models, the MDEFF technique exhibits a
substantially better performance than other widely usedmethods. TheMDEFF approachworks well evenwithmissing data.
Furthermore, given their numerical efficiency, the MDEFF approach is useful for handling huge datasets, typically found in
the context of long-memory time series.

On the other hand, a key component of the MDE methodology is the asymptotic variance of sample autocorrelations. An
additional contribution of this paper is an analytic expression for this asymptotic variance, provided in Section 2.

The remainder of this paper is organized as follows. In Section 2webriefly review the large-sample behavior of the sample
autocorrelations of a long-memory process. In particular, we establish a useful formula for the calculation of the asymptotic
distribution of the sample autocorrelation function. A newMDEmethod based onminimum distance and fractional filtering
is proposed in Section 3. The results from several Monte Carlo simulations assessing the finite sample performance of this
method are reported in Section 4. Section 5 is devoted to the application of the proposed methodology to the estimation of
two well known long-memory time series. In addition, this section presents a study of the effectiveness of MDEFF method
for parameter estimation in the context of missing data. Final remarks are given in Section 6 while proofs of the results
established in this paper are provided in the technical appendix.

2. Asymptotic distribution of sample autocorrelations

Let {y1, . . . , yn} be a sequence of observations from the ARFIMA(p, d, q) process defined by

φ(B)yt = θ(B)(1 − B)−dεt , (1)
where B is the backshift operator Byt = yt−1, (1 − B)−d is the fractional difference operator defined by the binomial series
(1 − B)−d

=


∞

k=0
(k+d−1)!
k!(d−1)! B

k, and φ(B) = 1 − φ1B − φ2B2
− · · · − φpBp, θ(B) = 1 + θ1B + θ2B2

+ · · · + θqBq. It is assumed
that {εt} is a zero-mean independent identically distributed sequence with E(ε2t ) = σ 2 and E(ε4t ) < ∞.

Let ρ andρ be two vectors containing the firstM population and sample autocorrelations, respectively
ρ = (ρ1, . . . , ρM)

′, ρ = (ρ1, . . . ,ρM)′.
Hosking (1996) showed that for an ARFIMA(p, d, q) process with d ∈ (− 1

2 ,
1
4 ) and parameter vector λ =

(φ1, . . . , φp, d, θ1, . . . , θq), the vector of estimated autocorrelations satisfies the central limit theorem (CLT)
√
n (ρ − ρ) → N[0, V (λ)], (2)

for fixed M , as n → ∞, where the elements V (λ) are given by

V (λ)ij =

∞
k=−∞


ρ(k + i)ρ(k + j)+ ρ(k − i)ρ(k + j)+ 2ρ(i)ρ(j)ρ2(k)

− 2ρ(i)ρ(k)ρ(k + j)− 2ρ(j)ρ(k)ρ(k + i)

. (3)

Observe that the result (2) can be extended to d ∈ (−∞, 1
4 ) by an application of the CLT of Hannan (1976). In this interval

for d, the spectral density of {yt} is squared integrable, which is a necessary and sufficient condition for (2) according to
Hannan (1976); see the proof of Theorem 1 for further details. On the other hand, note that expression (3) can be written as

V (λ)ij = ϕ(j − i)+ ϕ(j + i)+ 2ρ(i)ρ(j)ϕ(0)− 2ρ(i)ϕ(j)− 2ρ(j)ϕ(i), (4)
where

ϕ(k) =

∞
j=−∞

ρ(j)ρ(j + k). (5)

The next proposition, proved in the technical appendix, provides a useful expression to calculate the function ϕ(·).
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Proposition 1. Let {yt} be an ARFIMA(p, d, q) process defined in (1)with d < 1
4 and autocovariance function γ (·). Assume that

the roots {r1, . . . , rp} of the AR polynomial are simple. Then,

∞
j=−∞

γ (j)γ (j + s) = σ 4
2q

k=−2q

p
j=1

ψ(k)C(d, 2p + k + s, rj), (6)

where

C(d, h, rj) =
Γ (1 − 4d)

Γ (1 − 2d)Γ (2d)
Γ (h + 2d)

Γ (1 + h − 2d)
cj

αjF(h + 2d, 1; 1 + h − 2d; rj)

+βj[1 − F(2d − h, 1; 1 − h − 2d; rj)] + r4p−2
j F(h + 2d, 2; h + 1 − 2d; rj)

+ r−2
j [F(2d − h, 2; 1 − h − 2d; rj)− 2F(2d − h, 1; 1 − h − 2d; rj)+ 1]


,

αj = −2r4p−2
j


p

k=1

1
1 − rjrk

+


k≠j

rk
rk − rj


,

βj = −
2
rj


p

k=1

rk
1 − rjrk

+


k≠j

1
rk − rj


,

cj =

p
k=1

(1 − rjrk)−2Πk≠j(rk − rj)−2,

ψ(k) =

q
i,j,ℓ=0

θiθjθℓθℓ+j−i+k,

with θ0 = 1, θj = 0 for j < 0 and F(·) is the hypergeometric function.

From (6) we can readily obtain the expression

ϕ(k) =
1

[γ (0)]2

∞
j=−∞

γ (j)γ (j + k),

where γ (0) is given by formula (8) of Sowell (1992). For amodel with no autoregressive components, Proposition 1 provides
a simple expression for ϕ(·). For example, in the case of an ARFIMA(0, d, 1)model we have the following result which is an
immediate consequence of Proposition 1.

Corollary 1. Let {yt} be an ARFIMA(0, d, 1) process satisfying

yt = (1 + θB)(1 − B)−dεt ,

with |θ | < 1 and d < 1
4 . Then, (5) can be expressed as

ϕ(k) =
1
β2

Γ (1 − 4d)Γ 4(1 − d)
Γ 2(1 − 2d)

(−1)k

Γ (1 − 2d + k)Γ (1 − 2d − k)
sk,

where β = θ2 + 2θd/(1 − d)+ 1 and for k = 0, 1, . . .

sk = (1 + θ)4 + akθ

θbk − 2(θ + 1)2


,

ak =
(1 − 4d)(2 − 4d)

(1 − 2d + k)(1 − 2d − k)
,

bk =
(3 − 4d)(4 − 4d)

(2 − 2d + k)(2 − 2d − k)
.

Note that for an ARFIMA(0, d, 0)model we have sk = 1 for all k and β = 1. Consequently, for this model we have

ϕ(k) =
Γ (1 − 4d)Γ 4(1 − d)

Γ 2(1 − 2d)
(−1)k

Γ (1 − 2d + k)Γ (1 − 2d − k)
, (7)

which can be easily computed; see Section 3.2.1. In addition, by setting d = 0, Proposition 1 can also be applied to the
ARMA(1, 1) case discussed by Baillie and Chung (2001).
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3. Minimum distance estimation

The MDE method is based on the minimization of the distance between sample and population autocorrelations. This
approach takes advantage of the good statistical properties displayed by sample correlations when a central limit theorem
(2) holds. The MDE of λ is the value that minimizes the criterion function

S(λ) = [ρ(λ)−ρ ]
′V (λ)−1

[ρ(λ)−ρ ], (8)

where ρ(λ) is the true autocorrelation function (ACF) for the parameter λ. Letλ be the value that minimizes S(λ) and let λ0
be the true parameter. The MDE method intends to find conditions so that

√
n(λ− λ0) → N[0,Λ(λ)], (9)

as n → ∞, where the variance–covariance matrixΛ(·) is given by

Λ(λ) =

D(λ)′V (λ)−1D(λ)

−1
, (10)

with D(λ) = ∂ρ(λ)/∂λ. The limiting distribution (9) holds for the MDE method proposed by Tieslau et al. (1996) for a
fractional noise process with long-memory parameter satisfying d ∈ (− 1

2 ,
1
4 ). In what follows, we briefly review this result

and propose a new MDE method applicable to the entire class of ARFIMA(p, d, q) processes with d ∈ (− 1
2 ,

1
2 ).

3.1. Fractional noise estimation when −
1
2 < d < 1

4

As shown by Hosking (1996), when d ∈ (− 1
2 ,

1
4 ), the sample autocorrelations of an ARFIMAmodel satisfy a central limit

theorem with a rate n−1/2 as in (2). For ARFIMA(0, d, 0) models with d ∈ (− 1
2 ,

1
4 ), Tieslau et al. (1996) proved (9)–(10)

considering λ = d, where D(d) = (D1, . . . ,DM)
′ is given by

Di = ρi

i
j=1

2j − 1
(j − 1 + d)(j − d)

.

Unfortunately, the method proposed by Tieslau et al. (1996) requires that d < 1
4 , but the worst effects on the statistical

inferences about a long-range dependent time series occur for large values of d or very longmemory, that is, when 1
4 < d < 1

2 ;
see Section 1.1 of Beran (1994). For this interval, as pointed out by Hosking (1996), the asymptotic distribution of sample
autocorrelations is non-Gaussian and the convergence rate depends on the Hurst parameter, which is unknown in practical
applications.

3.2. ARFIMA estimation with −
1
2 < d < 1

2

In order to overcome the problem described in the previous section, our strategy to handle strongly dependent processes
with very long memory consists of applying a fractional filter to the observed series to reduce its memory. Assume that {yt}
is an ARFIMA(p, d, q) process defined by (1). Then, by applying the fractional filter (1 − B)d0 to {yt} we obtain the process
{xt} given by

xt = (1 − B)d0yt =

∞
j=0

πj(d0)yt−j, (11)

where the coefficients πj(d0) can be readily evaluated by the recursive equation

πj+1(d0) = πj(d0)
j − d0
j + 1

,

for j = 0, 1, . . . , with π0(d0) = 1. Thus, the filtered process {xt} satisfies the discrete-time equation

φ(B)xt = θ(B)(1 − B)d0−dεt .

Consequently, {xt} is an ARFIMA(p, d−d0, q) process and its memory is reduced by choosing d0 > 0. As an example, assume
that d0 = 0.5. Thus, if d ∈ (− 1

2 ,
1
2 ) then thememory parameter of the filtered process {xt} lies in the interval (−1, 0). Hence,

according to Bondon and Palma (2007), the process {xt} is stationary and invertible. The reduction of memory implies that
the sample autocorrelations of {xt} satisfy the central limit theorem (2). Then, theMDEof anARFIMAmodel can be calculated
on the filtered series. This procedure corresponds to the MDEFF method introduced in Section 1. In practice, the observed
time series {y1, . . . , yn} is a finite set of values but in order to apply the fractional filter (11) we need the entire infinite series
{yn, yn−1, . . .}. To circumvent this problem, the filtered series can be approximated by

x̃t =

t−1
j=0

πj(d0)yt−j, t = 1, . . . , n. (12)
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The procedure for estimating the parameters is summarized next. For illustration purposes, we consider an ARFIMA(0, d, 1)
process with parameter λ = (d, θ): (a) Apply the fractional filter (12) using d0 = 0.5 to the demeaned observed
series {y1, . . . , yn} to obtain the filtered series {x̃1, . . . , x̃n}. (b) Calculate the autocorrelations ρx̃(1), . . . ,ρx̃(M) based
on {x̃1, . . . , x̃n} and find the minimum distance estimate by minimizing the criterion function S(·) defined in (8). These
estimates are denoted by (df ,θ). Therefore the MDEFF of {y1, . . . , yn} is λ = (d0 +df ,θ). (c) The estimated standard
deviations (SD) are computed from the matrixΛ(λ) defined in (10). For instance, the SD ofd andθ are given by

SD(d) =

n−1Λd(df ,θ) 1

2 , SD(θ) =

n−1Λθ (df ,θ) 1

2 , (13)

where Λd and Λθ are the diagonal elements of Λ corresponding to d and θ , respectively. A formal justification of this
procedure is given in the next theorem, which is proved in the technical appendix.

Theorem 1. Let {yt} be an ARFIMA(p, d, q) process with −
1
2 < d < 1

2 and −1 < d − d0 < 1
4 , for some d0 > 0.

Let λ = (φ1, . . . , φp, d, θ1, . . . , θq) be the true parameter vector of this model. In addition, let {xt} be the process given
in (11) obtained by fractional filtering and let {x̃t} be its finite sample counterpart given by (12). Let ρx = [ρx(1), . . . ,ρx(M)]′
and ρx̃ = [ρx̃(1), . . . ,ρx̃(M)]′ be the sample autocorrelation vectors of {xt} and {x̃t}, respectively. Then, for fixed M, the
autocorrelation vector ρx̃ satisfies

√
n(ρx̃ − ρx) → N[0, V (λ)],

as n → ∞, where V (λ) is the matrix defined in (3). Furthermore, the MDEFF estimatorλ satisfies
√
n(λ− λ) → N[0,Λ(λ∗)],

as n → ∞, whereΛ(·) is the matrix defined in (10) evaluated at λ∗
= (φ1, . . . , φp, d − d0, θ1, . . . , θq).

Remark 1. Note that by choosing d0 =
1
2 the assumption −1 < d − d0 < 1

4 in Theorem 1 is satisfied for all d ∈ (− 1
2 ,

1
2 ).

It is worthwhile comparing the theoretical efficiency of the MDEFF and the exact Gaussian maximum likelihood
estimation methods. For instance, Table 1 displays the ratios of the standard deviations, MDEFF over MLE, for several
ARFIMA(0, d, 1) models. The standard deviations of the MDEFF method are calculated considering M = 10, 20, 50 and
by using formulas (13) with theoretical parameter values instead of estimates. For a Gaussian fractional noise time series of
size n, the asymptotic standard deviation of the maximum likelihood estimate of d is


6/(nπ2). According to Palma (2007,

p. 106), for a Gaussian ARFIMA(0, d, 1) time series we have

SD(d) =
1
π


6

n(1 − ρ2
θ )

 1
2

, SD(θ) =
1
π


1 − θ2

n(1 − ρ2
θ )

 1
2

,

where ρθ = −

√
6
π

√
1 − θ2

log(1+θ)
θ

is the correlation betweend andθ .
Table 1 reveals that the efficiency of the MDEFF method increases withM . In particular, forM = 50 the efficiency of the

MDEFF estimates seems to be very good. ForM = 10 andM = 20 the efficiency seems to be goodwhen θ ≥ 0 and d ≥ 0.30
and reasonable when d < 0.30. Overall, these results indicate that for θ ≥ 0 the efficiency of the MDEFF method is good
even for M = 10 autocorrelations. In Section 4, the performance of MDEFF is evaluated in finite samples through Monte
Carlo simulations which show that the performance of the MDEFF estimator is very good compared to other techniques.

3.2.1. Implementation of the MDEFF method
The implementation of the MDEFF method is illustrated in this section by considering the ARFIMA(0, d, 1) model with

λ = (d, θ). In this example, we obtain the following expressions, which include the fractional noise process as a particular
case when β = 1 and sk = 1 for all k. These quantities have been defined in Corollary 1. (a) Autocorrelation function: By
Hosking (1981) we have

ρ(k) =
Γ (k + d)Γ (1 − d)
Γ (k − d + 1)Γ (d)


ak2 − (1 − d)2

k2 − (1 − d)2


,

where a = (1 + θ)2/[1 + θ2 + 2θd/(1 − d)]. For a fractional noise model, ρ(1) = d/(1 − d) and the autocorrelations can
be calculated recursively by the formula,

ρ(k + 1) = ρ(k)
k + d

k − d + 1
, k = 0, 1, . . . ,M − 1.

(b) Calculation of V (λ): Consider ϕ(k) = Cf (k) in (4) where

C =
1
β2

Γ (1 − 4d)Γ 4(1 − d)
Γ 4(1 − 2d)

, f (k) =
(−1)kΓ 2(1 − 2d)

Γ (1 − 2d + k)Γ (1 − 2d − k)
sk.
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Table 1
Efficiency of MDEFF based on M autocorrelations and d0 = 0.5 for ARFIMA(0, d, 1) and fractional noise (FN) models. Rd and Rθ correspond to the ratio of
the asymptotic MDEFF standard deviation over the asymptotic MLE standard deviation for d and θ , respectively.

d θ M = 10 M = 20 M = 50
Rd Rθ Rd Rθ Rd Rθ

0.45 0.8 1.061 1.154 1.030 1.008 1.014 1.001
0.4 1.075 1.024 1.041 1.013 1.019 1.006
FN 1.052 1.028 1.013

−0.4 1.398 1.322 1.166 1.133 1.066 1.052
−0.8 1.216 1.245 1.170 1.131 1.083 1.068

0.40 0.8 1.085 1.154 1.046 1.009 1.022 1.002
0.4 1.105 1.031 1.061 1.018 1.029 1.009
FN 1.076 1.043 1.020

−0.4 1.519 1.405 1.226 1.175 1.094 1.073
−0.8 1.223 1.269 1.161 1.115 1.094 1.072

0.30 0.8 1.136 1.152 1.078 1.011 1.040 1.003
0.4 1.169 1.046 1.101 1.028 1.051 1.014
FN 1.125 1.074 1.037

−0.4 1.785 1.587 1.353 1.263 1.155 1.116
−0.8 1.245 1.341 1.147 1.097 1.109 1.076

0.20 0.8 1.186 1.151 1.111 1.013 1.058 1.005
0.4 1.234 1.060 1.142 1.037 1.073 1.020
FN 1.175 1.105 1.054

−0.4 2.085 1.791 1.487 1.355 1.217 1.159
−0.8 1.276 1.435 1.140 1.095 1.118 1.076

0.10 0.8 1.236 1.150 1.143 1.015 1.075 1.006
0.4 1.298 1.074 1.183 1.046 1.095 1.025
FN 1.224 1.136 1.070

−0.4 2.422 2.017 1.628 1.450 1.279 1.202
−0.8 1.313 1.546 1.139 1.105 1.122 1.074

Then, for i = 1, . . . ,M, j = i, . . . ,M the elements of matrix V (λ) are

V (λ)ij = C [f (j − i)+ f (j + i)+ 2ρ(i)ρ(j)f (0)− 2ρ(i)f (j)− 2ρ(j)f (i)] .

For a fractional noise model, β = 1, f (0) = 1. Hence, a simplified formula for calculating f (·) is given by,

f (k + 1) = f (k)
2d + k

1 − 2d + k
, k = 0, 1, . . . , 2M − 1.

(c) Computation of D(λ): The first row of this matrix is ∂ρ

∂d = [Dd(1), . . . ,Dd(M)] and the second row is ∂ρ

∂θ
=

[Dθ (1), . . . ,Dθ (M)], where

Dd(k) = ρ(k)


Tk +

k
j=1

2j − 1
(j − 1 + d)(j − d)


,

Tk =
−2(1 − d)

k2 − (1 − d)2
+


∂a
∂d


k2 + 2(1 − d)

ak2 − (1 − d)2
,

∂a
∂d

=
−2θ(1 + θ)2

(1 + θ2)(1 − d)+ 2θd
2 ,

and

Dθ (k) = ρ(k)

∂a
∂θ


k2

ak2 − (1 − d)2


,

∂a
∂θ

= 2a


1
1 + θ

−
θ(1 − d)+ d

(1 + θ2)(1 − d)+ 2θd


.

3.2.2. MDEFF for time series with missing data
The MDEFF method can be easily adapted to handle time series with missing data because the autocorrelations can be

estimated despite the presence of missing data; see for example Parzen (1963). A minor difficulty arises in the filtering
step (12) since the calculation of x̃t requires all the observations {yt , . . . , y1}. A solution for this problem is interpolating
the missing values by using, for instance, cubic splines. Thus, let y1, . . . , yn be the available time series with missing data
at positions indexed by a set A. The steps for the application of the MDEFF method to this case are: (a) Interpolate the
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Table 2
Theoretical SD of theMDEFF of fractional noise series of size
n, based on M = 10 autocorrelations and d0 = 0.5. The
asymptotic SD of the MLE is reported in the last row.

d n = 100 n = 250 n = 500

0.45 0.0820 0.0519 0.0367
0.40 0.0839 0.0530 0.0375
0.20 0.0916 0.0579 0.0410
MLE 0.0780 0.0493 0.0349

Table 3
Theoretical SD for MDEFF of ARFIMA(0, d, 1) time series of size n with d = 0.4 based on M = 10 autocorrelations and d0 = 0.5. Asymptotic standard
deviations for the MLE are also included.

θ Method n = 100 n = 250 n = 500
SD(d) SD(θ) SD(d) SD(θ) SD(d) SD(θ)

0.8 MDEFF 0.0901 0.0737 0.0570 0.0466 0.0403 0.0330
MLE 0.0830 0.0639 0.0525 0.0404 0.0371 0.0286

0.4 MDEFF 0.1078 0.1183 0.0682 0.0748 0.0482 0.0529
MLE 0.0976 0.1147 0.0617 0.0725 0.0436 0.0513

−0.4 MDEFF 0.2896 0.3150 0.1832 0.1992 0.1295 0.1409
MLE 0.1907 0.2242 0.1206 0.1418 0.0853 0.1002

−0.8 MDEFF 0.2820 0.2253 0.1784 0.1425 0.1261 0.1007
MLE 0.2307 0.1775 0.1459 0.1123 0.1032 0.0794

missing data A by using splines. Denote the resultant series as ỹ1, . . . , ỹn. (b) Obtain the filtered series through (12) by using
ỹ1, . . . , ỹn instead of y1, . . . , yn. (c) Calculate the autocorrelations on x̃1, . . . , x̃n considering the missing data indexed by
A. (d) Apply the MDEFF method as described in Section 3.2. Note that the interpolation by cubic splines is simply a tool to
avoid missing more observations when filtering the series. The performance of this estimation procedure is illustrated in
Section 5.

4. Monte Carlo experiments

In order to assess the performance of the MDEFF estimator, several Monte Carlo experiments are carried out in this
section. Two parameter specifications are considered, fractional noise models and ARFIMA(0, d, 1)models. For a fractional
noise model, the values of d considered in this study are 0.20, 0.40 and 0.45. The first value corresponds to a moderate
long memory level and the last two values correspond to very high long memory levels. For the ARFIMA(0, d, 1)model, we
consider the parameters d = 0.40 and θ ∈ {0.8, 0.4,−0.4,−0.8}. The MDEFF method is run in this case with M = 10
autocorrelations and d0 = 0.5.

For each simulation run, we generate 1000 replications of Gaussian long-memory time series of sizes n = 100, 250, 500.
The quantities reported in this simulation study are: the mean of the estimators, the standard deviation and the root mean
squared error (RMSE). TheMDEFF approach is compared to other three estimators: the approximateMLEproposedbyHaslett
and Raftery (1989) and implemented in R, the Whittle (1953) estimator and the state space estimate proposed by Chan and
Palma (1998). These estimators are hereafter referred to as HR, Whittle and Kalman, respectively. The MDEFF, Whittle and
Kalman estimates are calculated by means of R codes, which are available upon request.

For comparison purposes, Tables 2 and 3 contain the theoretical asymptotic MDEFF standard deviations ofd andθ for
M = 10 autocorrelations and d0 = 0.5. Note that these standard deviations are valid for Gaussian and non-Gaussian
processes. In addition, we provide the asymptotic standard deviations for the corresponding Gaussian maximum likelihood
estimates.

As evidenced from the simulation results reported in Table 4, the MDEFF method is very good for fractional noise
models in terms of bias, and the standard deviations are very close to their theoretical counterparts shown in Table 2. For
ARFIMA(0, d, 1) models, Tables 5–7 reveal that the MDEFF estimates perform well in terms of bias when θ > 0. For the
case θ < 0, there is some bias when n = 500 and the bias seems to increase for smaller sample sizes. Besides, the sample
standard deviations of the MDEFF estimates for n = 500 and n = 250 are very close to their theoretical counterparts
shown in Table 3. This also occurs for the estimated for a sample size n = 100 with positive θ and forθ with θ = 0.4. For
ARFIMA(0, d, 1)models, the worst performance corresponds to θ = −0.4. A similar situation is observed for the standard
deviations of the MLE, as evidenced by Table 3.

Next, we compare the performance of theMDEFFmethodwith three othermaximum likelihood estimators. For fractional
noise models, we note in Table 4 that the MDEFF outperforms the other three methods in terms of bias, particularly when
n = 100 and d = 0.45. The HR estimates display the smallest standard deviations, closely followed by theMDEFF estimates.
On the other hand, regarding the RMSE, theMDEFF is the bestmethod, excepting the cases d = 0.2 for n = 250 and n = 500.
From Tables 5 to 7, for ARFIMA(0, d, 1)models with positive θ , the MDEFF seems to be the best method in terms of bias ofd
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Table 4
Monte Carlo experiments. 1000 replications of Gaussian ARFIMA(0, d, 0)
processes of size n. MDEFF method applied with d0 = 0.5 and M = 10
autocorrelations.

n d MDEFF HR Whittle Kalman

100 0.45 0.4307a 0.3695 0.4302 0.3923
0.0646b 0.0722 0.0848 0.0833
0.0674c 0.1081 0.0870 0.1013

0.4 0.3906 0.3346 0.3907 0.3521
0.0795 0.0770 0.0960 0.0862
0.0800 0.1010 0.0964 0.0986

0.2 0.2064 0.1499 0.1623 0.1575
0.0928 0.0853 0.1032 0.0862
0.0929 0.0988 0.1098 0.0960

250 0.45 0.4401 0.4129 0.4544 0.4315
0.0460 0.0447 0.0476 0.0520
0.0471 0.0581 0.0477 0.0551

0.4 0.3982 0.3725 0.4114 0.3863
0.0516 0.0478 0.0568 0.0543
0.0517 0.0551 0.0579 0.0560

0.2 0.2012 0.1772 0.1869 0.1816
0.0584 0.0528 0.0590 0.0530
0.0584 0.0575 0.0604 0.0561

500 0.45 0.4451 0.4297 0.4609 0.4528
0.0335 0.0313 0.0343 0.0375
0.0338 0.0373 0.0360 0.0376

0.4 0.3997 0.3866 0.4127 0.4040
0.0374 0.0338 0.0388 0.0397
0.0374 0.0363 0.0408 0.0398

0.2 0.1995 0.1881 0.1953 0.1925
0.0418 0.0365 0.0391 0.0374
0.0418 0.0384 0.0393 0.0382

a Is the sample mean for each combination.
b Is the standard deviation for each combination.
c Is the RMSE for each combination.

Table 5
Monte Carlo experiments. 1000 replications of Gaussian ARFIMA(0, d, 1) processes of size n = 100 with d = 0.4. MDEFF method applied with d0 = 0.5
andM = 10 autocorrelations.

θ MDEFF HR Whittle Kalmand θ d θ d θ d θ
0.8 0.3659a 0.7444 0.3342 0.8172 0.3565 0.7482 0.3456 0.8291

0.0888b 0.1150 0.0810 0.0712 0.1121 0.0922 0.0922 0.0873
0.0951c 0.1277 0.1043 0.0732 0.1202 0.1057 0.1070 0.0920

0.4 0.3714 0.3904 0.3019 0.4613 0.3528 0.4348 0.3323 0.4358
0.0970 0.1154 0.0908 0.1027 0.1288 0.1138 0.1071 0.1157
0.1011 0.1158 0.1336 0.1195 0.1371 0.1189 0.1267 0.1211

−0.4 0.2931 −0.2652 0.1693 −0.1813 0.2263 −0.2155 0.2608 −0.2831
0.1718 0.1987 0.1192 0.1379 0.1829 0.1712 0.1720 0.1970
0.2023 0.2401 0.2596 0.2585 0.2522 0.2516 0.2212 0.2290

−0.8 0.3178 −0.6846 0.0500 −0.5038 0.2993 −0.7890 0.1195 −0.5612
0.1926 0.2529 0.0993 0.1645 0.2047 0.2656 0.1755 0.2081
0.2094 0.2779 0.3638 0.3387 0.2281 0.2657 0.3309 0.3167

a Is the sample mean for each combination.
b Is the standard deviation for each combination.
c Is the RMSE for each combination.

for n = 100 and the second best for n = 250 and n = 500. Forθ , the bias of the MDEFF approach is similar to the bias of the
Kalman and Whittle methods, excepting the case θ = 0.4 and n = 100. In this situation, the bias of the MDEFF approach
seems to be considerably smaller than the bias of the Kalman andWhittle methods. Now, regarding the root mean squared
error, the MDEFF methodology exhibits small values ford when n = 100 and n = 250, and forθ when n = 100. On the
other hand, the HR estimate ofθ performs well.

For ARFIMA(0, d, 1)models with negative θ , the simulation results show that for θ = −0.8, the HR, Whittle and Kalman
methods exhibit severe bias ford andθ , evenwith a relatively large sample size of n = 500. On the contrary, the performance
of the MDEFF method measured in terms of bias, is very good. Excepting forθ when n = 100, where the bias is moderate
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Table 6
Monte Carlo experiments. 1000 replications of Gaussian ARFIMA(0, d, 1) processes of size n = 250 with d = 0.4. MDEFF method applied with d0 = 0.5
andM = 10 autocorrelations.

θ MDEFF HR Whittle Kalmand θ d θ d θ d θ
0.8 0.3843a 0.7780 0.3737 0.8048 0.3998 0.7697 0.3818 0.8011

0.0567b 0.0625 0.0512 0.0399 0.0637 0.0562 0.0591 0.0474
0.0588c 0.0662 0.0575 0.0401 0.0637 0.0638 0.0618 0.0474

0.4 0.3915 0.3889 0.3593 0.4235 0.4046 0.4014 0.3839 0.4057
0.0637 0.0765 0.0580 0.0695 0.0726 0.0753 0.0690 0.0757
0.0643 0.0773 0.0708 0.0733 0.0727 0.0753 0.0708 0.0759

−0.4 0.3518 −0.3392 0.2742 −0.2752 0.3474 −0.3265 0.3567 −0.3630
0.1352 0.1523 0.0955 0.1117 0.1338 0.1347 0.1288 0.1455
0.1435 0.1639 0.1579 0.1674 0.1437 0.1534 0.1359 0.1500

−0.8 0.3658 −0.7545 0.1099 −0.5376 0.1285 −0.5476 0.1725 −0.5871
0.1607 0.1642 0.1300 0.1498 0.1599 0.1599 0.1843 0.1853
0.1643 0.1703 0.3179 0.3021 0.3151 0.2987 0.2927 0.2822

a Is the sample mean for each combination.
b Is the standard deviation for each combination.
c Is the RMSE for each combination.

Table 7
Monte Carlo experiments. 1000 replications of Gaussian ARFIMA(0, d, 1) time series of size n = 500 with d = 0.4. MDEFF method applied with d0 = 0.5
andM = 10 autocorrelations.

θ MDEFF HR Whittle Kalmand θ d θ d θ d θ
0.8 0.3903a 0.7884 0.3849 0.8030 0.4063 0.7813 0.3982 0.7932

0.0431b 0.0461 0.0365 0.0283 0.0437 0.0364 0.0435 0.0306
0.0441c 0.0475 0.0395 0.0285 0.0441 0.0409 0.0435 0.0314

0.4 0.3930 0.3970 0.3777 0.4138 0.4106 0.3974 0.4045 0.3977
0.0458 0.0534 0.0399 0.0489 0.0483 0.0526 0.0497 0.0534
0.0463 0.0535 0.0457 0.0508 0.0495 0.0526 0.0499 0.0534

−0.4 0.3676 −0.3613 0.3236 −0.3221 0.3904 −0.3750 0.4044 −0.4022
0.1111 0.1231 0.0704 0.0825 0.0939 0.0997 0.0969 0.1080
0.1157 0.1289 0.1038 0.1134 0.0943 0.1027 0.0969 0.1079

−0.8 0.3820 −0.7806 0.2070 −0.6319 0.2507 −0.6570 0.2532 −0.6559
0.1276 0.1126 0.1334 0.1372 0.1674 0.1556 0.1838 0.1757
0.1288 0.1142 0.2345 0.2169 0.2242 0.2113 0.2352 0.2272

a Is the sample mean for each combination.
b Is the standard deviation for each combination.
c Is the RMSE for each combination.

but still smaller than the HR and Kalman methods. In terms of root mean squared error, the MDEFF seems to be the best
method. When θ = −0.4, the overall performance of the MDEFF approach is comparable to the best techniques (Whittle
and Kalman), but it seems to be better than these two methods ford when n = 100.

In summary, according to theMonte Carlo studies, the performance of theMDEFF seems to be very good and comparable
to the full likelihood methods. In fact, it seems to be the best methodology for small samples and very negative values
of θ . Furthermore, the simulations show that in order to apply the MDEFF method, selecting M = 10 autocorrelations
seems to be sufficient to produce good results. As reported in Table 1, even though the theoretical efficiency of the MDEFF
estimator is relatively low for some negative values of θ , the simulation results indicate that MDEFF outperforms the other
methods in terms of root mean squared errors. The computational efficiency of the MDEFF method is an additional relevant
advantage over other techniques. This method has a numerical complexity of order O(n log n), which is similar to FFT-
based methodologies, see for example Chan (1989) and Chen et al. (2006), and it is better than methods based on the
Durbin–Levinson algorithm, which is O(n2).

5. Illustrations

Three applications of the MDEFF method are presented in this section. The first two illustrations are concerned with the
statistical analysis of real-life time series consisting of tree rings and stock trading volume data. The third application shows
the performance of the MDEFF in computer-generated long-range dependent data with missing observations.
(a) Tree rings. Fig. 1 displays the width of yearly pinus longaeva tree rings collected in Mammoth Creek, Utah, USA, for the
period 1 AD–1989 AD. This time series is available from the Time Series Data Library. Evidence of long-memory behavior can
be obtained from the sample autocorrelation function depicted in Fig. 2. This figure also shows that the data distribution
appears to be asymmetric.
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Fig. 1. Tree rings time series.

Fig. 2. Autocorrelation function (left) and histogram (right) of the tree rings time series.

Table 8
Tree rings. Estimates of d in the fractional noise model. The standard deviations of the
MDEFF estimates based onM autocorrelations are reported within parentheses.

Period M MDEFF HR Whittle Kalman

1 AD–989 AD 10 0.232 (0.020) 0.237 0.241 0.247
20 0.229 (0.019)

990 AD–1989 AD 10 0.289 (0.029) 0.298 0.309 0.314
20 0.302 (0.028)

1 AD–1989 AD 10 0.195 (0.028) 0.187 0.192 0.195
20 0.184 (0.026)

Since the tree ring time series seems to exhibit different behavior in terms ofmemory,we split the series into twoperiods,
1 AD–989 AD and 990 AD–1989 AD. Subsequently, a fractional noise model was fitted to each period by using the MDEFF
methodwith d0 = 0.5,M = 10 andM = 20 autocorrelations. The results from this analysis, displayed in Table 8, show that
the estimates of theHurst parameter are highly significant, according to the standard deviations reportedwithin parentheses
in the fourth column. Thememory of the first period is lower than the memory in the second period, and the memory of the
full period lies between them. In addition, using 10 or 20 autocorrelations provides almost the same estimates of the Hurst
parameter. This is an important result because if very different estimates were obtained we would have an indication of an
inadequate model specification.

Note that given the nature of MDEFFmethodology, no explicit assumption on the distribution of the input noise has been
made. Besides, by assuming a Gaussian distribution, three other estimates for the fractional noise model are calculated: the
approximate maximum likelihood estimates of Haslett–Raftery, and Whittle and the state space Kalman estimator. Table 8
reveals that the four methods provide roughly the same estimates.

(b) Trading volume. Long memory in daily stock market volume has been observed by several authors; see for example
Lobato and Velasco (2000) and references therein. The dataset analyzed here corresponds to the logarithm of IBM daily
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Fig. 3. Trading volume time series.

Fig. 4. Autocorrelation function of the trading volume time series.

Table 9
Trading volume. Estimates of d and θ in the ARFIMA(0, d, 1) model.
The standard deviations of the MDEFF estimates based on M
autocorrelations are reported within parentheses.

Parameter M MDEFF HR Whittle Kalman

d 10 0.341 (0.030) 0.340 0.353 0.370
20 0.347 (0.028)

θ 10 0.134 (0.035) 0.137 0.129 0.120
20 0.122 (0.034)

trading volume for the period January 2, 1986 to December 31, 1993. This time series, displayed in Fig. 3 consists of 2024
observations, with mean 15.690 and standard deviation 0.422.

The sample ACF, depicted in Fig. 4, shows the presence of longmemorywith high first autocorrelations. The latter feature
implies that a short memory component may be needed in the model. For this reason an ARFIMA(0, d, 1) process was fitted
using the MDEFF method with d0 = 0.5 forM = 10 and M = 20 autocorrelations.

From Table 9, it can be observed that all the MDEFF estimates are highly significant and very robust to the value of M ,
indicating a good model specification. In addition, note that these estimates are close to the corresponding ones obtained
by the HR, Whittle and Kalman methods.

(c)Missing data. The performance of theMDEFFmethod in the context of time serieswithmissing values is examined here by
means ofMonte Carlo experiments. In these simulations, 1000 replications of normally distributed fractional noise processes
of lengths n = 250, 500 are generated. Three different percentages of missing data are considered: 5%, 10% and 20%. The
MDEFF estimates are calculated based on M = 10 autocorrelations and d0 = 0.5 following the procedure described in
Section 3.2.2. The sample autocorrelations are calculated by using the acf function of the statistical package R, which allows
for the handling of missing values. On the other hand, the HR estimates are calculated by interpolating the missing values
with cubic splines. The results from these simulations are reported in Table 10. This table reveals that the performance of the
MDEFF method is very good in terms of point estimation. The same occurs for the empirical standard deviations, excepting
the case d = 0.2 with 20% of missing data. Note that the bias of the HR method increases with the percentage of missing
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Table 10
Monte Carlo experiments. 1000 replications of Gaussian ARFIMA(0, d, 0) time series of size nwith 5%, 10% and 20% of missing data. MDEFFmethod applied
with d0 = 0.5 and M = 10 autocorrelations.

n d 5% 10% 20%
MDEFF HR MDEFF HR MDEFF HR

250 0.4 0.3950a 0.3914 0.3963 0.4140 0.4013 0.4540
0.0569b 0.0475 0.0596 0.0437 0.0689 0.0315
0.0571c 0.0483 0.0597 0.0459 0.0689 0.0625

0.2 0.2049 0.2098 0.2019 0.2422 0.2184 0.3224
0.0677 0.0539 0.0775 0.0527 0.1021 0.0600
0.0678 0.0547 0.0775 0.0675 0.1037 0.1363

500 0.4 0.3976 0.4064 0.4009 0.4300 0.4038 0.4704
0.0401 0.0334 0.0445 0.0311 0.0528 0.0196
0.0402 0.0339 0.0445 0.0432 0.0529 0.0731

0.2 0.1960 0.2176 0.1937 0.2518 0.2005 0.3353
0.0474 0.0365 0.0578 0.0386 0.0753 0.0423
0.0475 0.0406 0.0581 0.0646 0.0753 0.1417

a Is the sample mean for each combination.
b Is the standard deviation for each combination.
c Is the RMSE for each combination.

values. In particular, for 20% of missing values, the HR estimate is severely biased. In addition, the MDEFF method displays
less bias compared to the HR approach in all these cases studied.

6. Conclusions

A new estimation method based on minimum distance and a fractional filtering technique has been proposed and
compared to three well known methods: the approximate MLE of Haslett and Raftery (1989), a quasi-likelihood method
proposed by Whittle (1953) and the state space approach of Chan and Palma (1998). The main features of the MDEFF
estimator can be summarized as follows. It is easy to calculate and to implement, since the computation of the MDEFF
estimates is based on a reduced number of sample autocorrelations. The MDEFF approach allows for the estimation of
Gaussian and non-Gaussian ARFIMAprocesseswith uncorrelated innovations. No explicit assumptions on the distribution of
the data have to be made. The estimator of d is not affected by the estimation of the level parameterµ. Several Monte Carlo
experiments indicate that the MDEFF method exhibits very small bias and its precision, measured by the mean squared
error, is very good when compared to the other techniques considered in this study. In addition, for small sized time
series and ARFIMA(0, d, 1)models with negative θ , the performance of the MDEFF approach is substantially better than the
performance of the other methods. The MDEFF works well even with missing data. Finally, given its numerical efficiency,
the MDEFF technique is useful for handling huge datasets, typically found in the context of long-memory time series.
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Appendix

This Appendix provides the proofs of Proposition 1 and Theorem 1. First, we state Lemma 1 which is needed to show
Proposition 1 and subsequently we present Lemma 2 which is useful for proving Theorem 1.

Lemma 1. Let {yt} be a stationary process with spectral density f (·) and autocovariance function γ (·). If f 2 is integrable, then
for any h ∈ Z,

∞
j=−∞

γ (j)γ (j + h) = 2π
 π

−π

f 2(λ)e−ihλdλ. (14)

Proof. Let an = 2π
 π
−π

f 2(λ)e−iλhdλ−
n

j=−n γ (j)γ (j+h). Since f 2 is integrable, {an} is a well-defined sequence for n ≥ 0.
Furthermore, we can write an as

an = 2π
 π

−π

[f (λ)− fn(λ)]f (λ)e−iλhdλ,
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where fn(λ) =
1
2π

n
j=−n γ (j)e

−iλj. Note that by Bessel’s inequality,

(2π)−2
∞
j=0

γ 2(j) =

∞
j=0

|⟨f , eij ·
⟩|

2
≤ ∥f ∥2

2 =

 π

−π

f (λ)2dλ < ∞.

Since


∞

j=−∞
γ (j)2 < ∞, {fn} is a Cauchy sequence in L2(dλ) converging to the limit

f (λ) =
1
2π

∞
j=−∞

γ (j)e−iλj,

in L2(dλ). Thus, ∥f − fn∥2 → 0 as n → ∞. Consequently, by the Cauchy–Schwarz inequality |an| ≤ 2π
 π
−π

|f (λ) −

fn(λ)|f (λ)dλ ≤ 2π∥f −fn∥2∥f ∥2. Therefore, since ∥f ∥2 < ∞we conclude that an → 0 as n → ∞ and the result follows. �

Lemma 2. Under the assumptions of Theorem 1, there is a positive constant K such that

∥xt − x̃t∥ ≤ K td−d0−
1
2 ,

for all t ≥ 1.

Proof. Observe that xt − x̃t =


∞

j=t πj(d0)yt−j. Therefore,

∥xt − x̃t∥2
= Var


∞
j=t

πj(d0)yt−j


=

∞
i=t

∞
j=t

πi(d0)πj(d0)γ (i − j)

= γ (0)
∞
j=t

π2
j (d0)+ 2

∞
i >j ≥t

πi(d0)πj(d0)γ (i − j)

= γ (0)
∞
j=t

π2
j (d0)+ 2

∞
j=t

∞
k=1

πj(d0)πj+k(d0)γ (k)

= γ (0)
∞
j=t

π2
j (d0)+ 2

∞
j=t

πj(d0)


∞
k=1

πj+k(d0)γ (k)


.

By Lemma 3.2 of Palma (2007) we have that
∞
j=t

π2
j (d0) ∼ C1 t−2d0−1,

∞
k=1

πj+k(d0)γ (k) ∼ C2 j2d−d0−1.

Consequently, since πj(d0) ∼ jd0−1,

∞
j=t

πj(d0)


∞
k=1

πj+k(d0)γ (k)


∼ C2

∞
j=t

πj(d0)j2d−d0−1
∼ C3 t2d−2d0−1.

Therefore, ∥xt − x̃t∥ ≤ K td−d0−
1
2 , as required. �

Remark 2. If f (λ) is the spectral density of an ARFIMA(p, d, q) process

φ(B)yt = θ(B)(1 − B)−dεt , (15)

then f 2(λ) can be written as f 2(λ) =
σ 2

2π g(λ)where g(λ) is the spectral density of the ARFIMA(2p, 2d, 2q) process

φ(B)2yt = θ(B)2(1 − B)−2dεt . (16)

If {ρ1, . . . , ρp} are the simple roots of the AR part of the process (15) then the roots of the AR part of process (16) are also
{ρ1, . . . , ρp} but they have multiplicity 2. The spectral density of an ARFIMA(2p, 2d, 2q) process is not integrable for d > 1

4 .

Proof of Proposition 1. Letω = e−iλ and let g(λ) be the spectral density of theARFIMA(2p, 2d, 2q)process (16)with d < 1
4 .

Then g(λ) is given by

g(λ) =
σ 2

2π
|1 − ω|

−4d
|θ(ω)|4|φ(ω)|−4
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=
σ 2

2π
|1 − ω|

−4d
|θ(ω)|4

p
j=1

(1 − ρjω)
−2(1 − ρjω

−1)−2

=
σ 2

2π
|1 − ω|

−4d
2q

k=−2q

ϕ(k)ωk
p

j=1

(1 − ρjω)
−2(1 − ρjω

−1)−2.

By partial fraction decomposition g can be written as

g(λ) =
σ 2

2π
|1 − ω|

−4d
2q

k=−2q

ϕ(k)
p

j=1

cj


αj

1 − ρjω
+

βj

1 − ρ−1
j ω

+
ρ
4p−2
j

(1 − ρjω)2
+

ρ−2
j

(1 − ρ−1
j ω)2


ω2p+k. (17)

Let,

D(d) =
Γ (1 − 4d)

Γ (1 − 2d)Γ (2d)
Γ (h + 2d)

Γ (1 + h − 2d)
,

as in Sowell (1992, p. 184ff), for any h ∈ Z we have: π

−π

|1 − ω|
−4d

1 − ρω
ωh dλ =

∞
j=0

ρ j
 π

−π

|1 − ω|
−4d ωh+j dλ

= 2πD(d)F(2d + h, 1; 1 + h − 2d; ρ).

By analogous calculations we get π

−π

|1 − ω|
−4d

1 − ρ−1ω
ωh dλ =

 π

−π


1 −

∞
j=0

ρ jω−j


|1 − ω|

−4d ωh dλ

= 2πD(d)[1 − F(2d − h, 1; 1 − h − 2d; ρ)], π

−π

|1 − ω|
−4d

(1 − ρω)2
ωh dλ =

∞
j=0

(j + 1)ρ j
 π

−π

|1 − ω|
−4d ωh+j dλ

= 2πD(d)F(h + 2d, 2; 1 + h − 2d; ρ), π

−π

|1 − ω|
−4d

(1 − ρ−1ω)2
ωh dλ =

∞
j=2

(j − 1)ρ j
 π

−π

|1 − ω|
−4d ωh−j dλ

= 2πD(d)[F(2d − h, 2; 1 − h − 2d; ρ)− 2F(2d − h, 1; 1 − h − 2d; ρ)+ 1].

Now, by Lemma 1 and Remark 2,

∞
j=−∞

γ (j)γ (j + s) = 2π
 π

−π

f 2(λ)e−isλdλ = σ 2
 π

−π

g(λ)ωsdλ,

then by combining the above expressions with the spectral density decomposition (17) we get the required result. �

Proof of Theorem 1. Part (a). Since the process {xt} has long-memory parameter d − d0 with −1 < d − d0 < 1
4 ,

this process is second order stationary and invertible; cf. Bondon and Palma (2007) and Theorem 3.4 of Palma (2007).
Observe that the spectral density of {xt} satisfies f (λ) ∼ c|λ|2(d0−d) as |λ| → 0, for some positive constant c . Thus, π
−π

f (λ)2 dλ ≤ K
 π
−π
λ4(d0−d) dλ for some positive constant K . Consequently, f (λ)2 is integrable for −∞ < d − d0 < 1

4 .
Therefore, an application of the central limit theorem of Hannan (1976) yields

√
n (ρx − ρx) → N(0, V ) in distribution, as

n → ∞ for −∞ < d − d0 < 1
4 . Thus, it suffices to show that

√
n(ρx −ρx̃) → 0 in probability as n → ∞. To this end, note

that

ρx(k)−ρx̃(k) =
γx(k)−γx̃(k)γx(0) +γx̃(k)γx̃(0)−γx(0)γx̃(0)γx(0) .

By the ergodicity of {xt}, for fixed k we have that γx(k) → γx(k) in probability, as n → ∞ and then as a consequence
of the result (18), γx̃(k) converges to a constant in probability. Therefore, by Slutsky’s theorem it suffices to prove that√
n[γx(k)−γx̃(k)] → 0 in probability as n → ∞, for a fixed k. But, this term can be written as

√
n[γx(k)−γx̃(k)] =

1
√
n

n−k
t=1


(xt − x̃t + x̃ − x̄)(x̃t+k − x̃)+ (xt+k − x̃t+k + x̃ − x̄)(xt − x̄)


,
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where x̄ =
1
n

n
t=1 xt and x̃ =

1
n

n
t=1 x̃t . Therefore,

√
nE|γx(k)−γx̃(k)| ≤

1
√
n

n−k
t=1


E|(xt − x̃t + x̃ − x̄)(x̃t+k − x̃)| + E|(xt+k − x̃t+k + x̃ − x̄)(xt − x̄)|


.

Thus, an application of the Cauchy–Schwarz inequality yields

√
nE|γx(k)−γx̃(k)| ≤

1
√
n

n−k
t=1


∥xt − x̃t + x̃ − x̄∥ ∥x̃t+k − x̃∥ + ∥xt+k − x̃t+k + x̃ − x̄∥ ∥xt − x̄∥


≤

1
√
n

n−k
t=1


(∥xt − x̃t∥ + ∥x̃ − x̄∥)∥x̃t+k − x̃∥ + (∥xt+k − x̃t+k∥ + ∥x̃ − x̄∥)∥xt − x̄∥


.

Note that by Lemma 2 we have that for all t ≥ 1, ∥xt − x̃t∥ ≤ K td−d0−
1
2 . Consequently,

∥x̃ − x̄∥ =

1n
n

t=1

(x̃t − xt)

 ≤
1
n

n
t=1

∥x̃t − xt∥ ≤ K nd−d0−
1
2 .

Thus,
√
nE|γx(k)−γx̃(k)| ≤ K nd−d0 . Now, since d < d0, we conclude that

√
nE|γx(k)−γx̃(k)| → 0, (18)

as n → ∞. Then, by virtue of Markov’s inequality we obtain the result. Part (b). This result is a consequence of Part (a) above
and a direct application of Appendix A of Baillie and Chung (2001). �

References

Baillie, R., Chung, H., 2001. Estimation of GARCHmodels from the autocorrelations of the squares of a process. Journal of Time Series Analysis 22, 631–650.
Beran, J., 1994. Statistics for Long-Memory Processes. Chapman and Hall, New York.
Bhardwaj, G., Swanson, N.R., 2006. An empirical investigation of the usefulness of ARFIMAmodels for predicting macroeconomic and financial time series.

Journal of Econometrics 131, 539–578.
Bondon, P., Palma, W., 2007. A class of antipersistent processes. Journal of Time Series Analysis 28, 261–273.
Chan, R.H., 1989. Circulant preconditioners for Hermitian Toeplitz systems. SIAM Journal on Matrix Analysis and Applications 10, 542–550.
Chan, N.H., Palma, W., 1998. State-space modeling of long-memory processes. Annals of Statistics 26, 719–740.
Cheang, W.K., Reinsel, G.C., 2003. Finite sample properties of ML and REML estimators in time series regression models with long memory noise. Journal

of Statistical Computation and Simulation 73, 233–259.
Chen, W., Hurvich, C.M., Lu, Y., 2006. On the correlation matrix of the discrete Fourier transform and the fast solution of large Toeplitz systems for long-

memory time series. Journal of the American Statistical Association 101, 812–822.
Cheung, Y.W., Diebold, F.X., 1994. On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean.

Journal of Econometrics 62, 317–350.
Doornik, J.A., Ooms, M., 2003. Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models.

Computational Statistics and Data Analysis 42, 333–348.
Doukhan, P., Oppenheim, G., Taqqu, M.S. (Eds.), 2003. Theory and Applications of Long-Range Dependence. Birkhäuser.
Granger, C.W.J., Joyeux, R., 1980. An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis 1, 15–29.
Hannan, E.J., 1976. The asymptotic distribution of serial covariances. Annals of Statistics 4, 396–399.
Haslett, J., Raftery, A.E., 1989. Space–time modelling with long-memory dependence: assessing Ireland’s wind power resource (with discussion). Applied

Statistics 38, 1–21.
Henry, M., 2001. Averaged periodogram spectral estimationwith long-memory conditional heteroscedasticity. Journal of Time Series Analysis 22, 431–459.
Hosking, J.R.M., 1981. Fractional differencing. Biometrika 68, 165–176.
Hosking, J.R.M., 1996. Asymptotic distributions of the sample mean, autocovariance and autocorrelation of long-memory time series. Journal of

Econometrics 73, 261–284.
Kouamé, E., Hili, O., 2008. Minimum distance estimation of k-factors GARMA processes. Statistics and Probability Letters 78, 3254–3261.
Liseo, B., Marinucci, D., Petrella, L., 2001. Bayesian semiparametric inference on long-range dependence. Biometrika 88, 1089–1104.
Lobato, I., Velasco, C., 2000. Long-memory in stock-market trading volume. Journal of Business & Economic Statistics 18, 410–427.
Mayoral, L., 2007. Minimum distance estimation of stationary and non-stationary ARFIMA processes. Econometrics Journal 10, 124–148.
Palma, W., 2007. Long-Memory Time Series: Theory and Methods. Wiley, New Jersey.
Parzen, E., 1963. On spectral analysis with missing observations and amplitude modulation. Sankhyā. The Indian Journal of Statistics, Series A 25, 383–392.
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