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Abstract

This work establishes bounds for the eigenvalues of the covariance matrix from a general class of stationary
processes. These results are applied to the statistical analysis of the large sample behavior of estimates and
testing procedures of generalized long memory models, including Seasonal ARFIMA and k-factor GARMA
processes, among others.
c© 2003 Elsevier B.V. All rights reserved.

MSC: primary 62M10; secondary 60G12

Keywords: BLUE; Generalized long memory processes; Linear processes; Toeplitz matrix

1. Introduction

Time series data exhibiting both long memory and cyclical behavior have been extensively
documented during the last decade. For example, these features are present in monetary aggre-
gates (Porter-Hudak, 1990), revenue data (Ray, 1993), in9ation rates (Hassler and Wolters, 1995)
and monthly 9ows of the Nile River (Montanari et al., 2000), among others. To account for this
behavior, a number of models have been proposed. For instance, Porter-Hudak (1990) introduces the
seasonal autoregressive fractionally integrated moving average (SARFIMA) process and Woodward
et al. (1998) propose the k-factor Gegenbauer autoregressive moving average (k-factor GARMA)
process. A SARFIMA process (Xt) with period s satis<es the di=erence equation

�(B)(1− B)d	(Bs)(1− Bs)d1(Xt − 
) = �(B)�(Bs)t ;
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where B is the backward shift operator, s¿ 2 is an integer, (t) is an uncorrelated zero mean
sequence with variance �2

 , �;	; �;� are polynomials such that � and 	 have no zeroes on the unit
circle, and d+ d1 ¡ 1=2, d1 ¡ 1=2. Under these assumptions, (Xt) is stationary with mean 
 and its
spectral measure is absolutely continuous with respect to d�, the Lebesgue measure on I = [− �; �].
The corresponding spectral density f is given by

f(�) =
�2


2�

∣∣∣∣�(e
i�)�(eis�)

�(ei�)	(eis�)

∣∣∣∣
2 k∏
j=0

|(ei2�j=s − ei�)(e−i2�j=s − ei�)|−2dj ; (1)

where k = [s=2], d0 = (d+ d1)=2, dj = d1 for 16 j6 k − 1, dk = d1 if s is odd, and dk = d1=2 if s
is even. A k-factor GARMA process (Xt) satis<es the di=erence equation

�(B)
k∏

j=1

(1− 2B cos �j + B2)dj(Xt − 
) = �(B)t ;

where � has no zeroes on the unit circle, the �j are distinct values in [0; �], all dj �= 0, dj ¡ 1=2
whenever �j �= 0 and �j �= �, and dj ¡ 1=4 when �j = 0 or �j = �. (Xt) is stationary with mean 

and its spectral measure is absolutely continuous with respect to d� with density f given by

f(�) =
�2


2�

∣∣∣∣ �(e
i�)

�(ei�)

∣∣∣∣
2 k∏
j=1

|(ei�j − ei�)(e−i�j − ei�)|−2dj : (2)

The long memory property of SARFIMA and k-factor GARMA processes is re9ected by the peculiar
shape of their spectral density around the frequencies �j with �j = 2�j=s for a SARFIMA process.
Indeed, in (1) and (2), f(�) behaves like |�− �j|−2dj as � → �j. Thus, when 0¡dj ¡ 1=2, f(�) is
unbounded at �= �j.

In this paper, we consider a (possibly complex-valued) stationary process (Xt) with absolutely
continuous spectral measure whose derivative f satis<es (5) where g is bounded away from zero
and in<nity, the �j are arbitrary distinct values in (−�; �) and all dj ¡ 1=2. We establish some bounds
for the eigenvalues �1; n; : : : ; �n;n of the covariance matrix �n = (�i−j)ni; j=1 where �j =

∫
I e

ij�f(�) d�
and n is an arbitrary positive integer. Since �n is positive semide<nite, it is Hermitian and all
�k;n are nonnegative. By using the interlacing eigenvalues theorem for bordered Hermitian matrices
(see Horn and Johnson, 1991, Theorem 4.3.8), one easily obtain that for any <xed integer k¿ 1,
the sequences (�k;n)n¿k and (�n+1−k;n)n¿k are respectively nonincreasing and nondecreasing.
Moreover, if we denote by m and M the essential in<mum and supremum of f, respectively, it
was shown by Grenander and SzegMo (1958, Chapter 5) that 2�m6 �k;n6 2�M , and that for any
<xed k¿ 1,

lim
n→∞ �k;n = 2�m; (3)

lim
n→∞ �n+1−k;n = 2�M: (4)

The limit relation (4) holds also in case M =+∞. The same authors established the following result
about the order of magnitude of the di=erences �k;n − 2�m and 2�M − �n+1−k;n as n becomes large.
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Theorem 1 (Grenander and SzegMo, 1958). Under the following assumptions:

(i) f is continuous on the compact set I and f(−�) = f(�);
(ii) the in;mum of f is attained at only one value �= �0 (mod 2�);
(iii) f has a continuous second derivative in a certain neighborhood of �0 and f′′(�0) �= 0;

we have for any ;xed k¿ 1, �k;n − 2�m ∼ C=n2 as n → ∞ where C is a positive constant. A
similar result holds for 2�M − �n+1−k;n.

In Theorem 2, we consider a spectral density of special type which is not necessarily continuous
nor bounded on I and we establish some bounds for the eigenvalues �k;n. In Corollary 1, we consider
the case where m = 0 and M = +∞ and we establish some bounds on the rate of convergence of
�k;n to zero, and �n+1−k;n to +∞, respectively, as n → ∞ and k is <xed. As applications, we show
that the bounds established in Theorem 2 give valuable clues about the asymptotic behavior of the
best linear unbiased estimator (BLUE) of the mean of (Xt), the sample mean, and the consistency
of the time series linear discriminant functions (LDF).

This paper is organized as follows. The results on the behavior of the eigenvalues of �n are
presented in Section 2. It starts with a preliminary result, and then proceeds with the main result
contained in Theorem 2. Applications of this theorem to the estimation of the location of the process
(Xt) and to the analysis of the consistency of the LDF are discussed in Section 3.

2. Main result

Hereafter, for any set S, we denote by )S the indicator function of S.

Lemma 1. Let I = (a; b) be an interval in R, H the set of functions mapping I into R, c,
d positive real numbers satisfying c(b − a)¿d, f a monotone integrable function in H, P =
{h∈H ; 06 h6 c;

∫
I h = d}, and ' = inf h∈P

∫
I fh, ( = suph∈P

∫
I fh. Then, if f is nonincreasing

(resp. nondecreasing), we have ' (resp: () = c
∫
I f)(b−d=c;b), ( (resp: ') = c

∫
I f)(a;a+d=c).

Proof. We show that f nonincreasing implies ' = c
∫
I f)(b−d=c;b). The other results are obtained

similarly. Let I1 = (a; b−d=c), I2 = (b−d=c; b), h0 = c)I2 , and h∈P. Since c(b− a)¿d, h0 ∈P. We
have

∫
I f(h− h0) =

∫
I1
fh+

∫
I2
f(h− c). Now∫

I1

fh¿f(b− d=c)
∫
I1

h= f(b− d=c)
∫
I2

(c − h):

Therefore,∫
I
f(h− h0)¿

∫
I2

(f(b− d=c)− f)(c − h)¿ 0;

which means that
∫
I fh0 = minh∈P

∫
I fh.

The following theorem applies to a large class of long memory models including both the
SARFIMA and the k-factor GARMA.
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Theorem 2. Let (Xt) be a stationary process with absolutely continuous spectral measure whose
derivative f with respect to the Lebesgue measure on I = [− �; �] satis;es

f(�) = g(�)
m∏
j=1

|ei�j − ei�|−2dj (5)

where function g complies with the boundedness condition 0¡'6 g6 (¡∞ for some constants
'; (, the �j are distinct values in (−�; �), all dj �= 0 and d16 · · ·6dm ¡ 1=2. Let �1; n6 · · ·6 �n;n
be the eigenvalues of the covariance matrix �n = (�i−j)ni; j=1 where �j =

∫
I e

ij�f(�) d�. Then there
exist positive constants C1; C2 such that

C1n2min(0;d1)6 �k;n6C2n2max(0;dm) (6)

for all n¿ 1 and for all k ∈{1; : : : ; n}.

Proof. Let fj(�)= |ei�j − ei�|−2dj . If dj ¿ 0, fj is positive, has a pole at �= �j and is continuous on
I \ {vj}; thus fj¿ aj ¿ 0 for some constant aj. If dj ¡ 0, fj has a zero at �= �j and is continuous
on I ; thus fj6 bj ¡∞ for some constant bj. Therefore, we deduce from (5) that f¿ a¿ 0 if
d1 ¿ 0, and f6 b¡∞ if dm ¡ 0, for some constants a; b. Assume that d1 ¡ 0 and dm ¿ 0, and
let k be the integer such that dk ¡ 0¡dk+1. We have

a′′
k∏

j=1

|ei�j − ei�|−2d1 6 a′
k∏

j=1

|ei�j − ei�|−2dj 6f(�)

6 b′
m∏

j=k+1

|ei�j − ei�|−2dj 6 b′′
m∏

j=k+1

|ei�j − ei�|−2dm

for some positive constants a′′; a′; b′; b′′. Now,

∀�∈ I; 0¡
sin

(
�+|�j|

2

)
�+|�j|

2

6

∣∣∣∣∣∣
sin

(
�−�j
2

)
�−�j
2

∣∣∣∣∣∣=
∣∣∣∣e

i� − ei�j

�− �j

∣∣∣∣6 1: (7)

Therefore, there exist positive constants a; b such that

af6f6 b Of; (8)

where

f(�) =
k∏

j=1

|�− �j|−2d1 ; (9)

Of(�) =
m∏

j=k+1

|�− �j|−2dm : (10)

We are going to show that there exist C1 ¿ 0 and C2 ¿ 0 such that �1; n¿C1n2min(0;d1) and
�n;n6C2n2max(0;dm) for all n¿ 1. Let n¿ 1 and C = {x∈Cn; x∗x = 1} where x∗ is the transpose
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conjugate of x. Since �n is Hermitian, we have �1; n = minx∈Cx∗�nx and �n;n = maxx∈Cx∗�nx. Let
x = (x1; : : : ; xn)′ ∈C, we have

x∗�nx =
n∑

k;l=1

x∗k �k−lxl =
∫
I

∣∣∣∣∣
n∑

k=1

xke−ik�

∣∣∣∣∣
2

f(�) d�: (11)

If d1 ¿ 0, f¿ a¿ 0 and we deduce from (11) that x∗�nx¿ 2�a, so that �1; n¿ 2�a. Similarly, if
dm ¡ 0, f6 b6∞ and we get that �n;n6 2�b. In what follows, we study the case d1 ¡ 0 and
dm ¿ 0. Let H be the set of functions mapping I into R and Pn={h∈H ; 06 h6 n;

∫
I h=2�}. The

function � �→ |∑n
k=1 xke

−ik�|2 belongs to Pn. Therefore, we deduce from (11) that �1; n¿ inf h∈Pn

∫
I hf

and �n;n6 suph∈Pn

∫
I hf. Since any h∈Pn is nonnegative, it results from (8) that

�1; n¿ a inf
h∈Pn

∫
I
hf; (12)

�n;n6 b sup
h∈Pn

∫
I
h Of: (13)

Let us <rst study inf h∈Pn

∫
I hf. We arrange the points �1; : : : ; �k in ascending order, �j1 ¡ · · ·¡�jk .

According to (9), f has k zeroes at �j1 ; : : : ; �jk and k−1 maxima at 01; : : : ; 0k−1 such that �ji¡0i¡�ji+1

for all i∈{1; : : : ; k − 1}. f is nonincreasing on I1 = [ − �; �j1); for all i∈{1; : : : ; k − 1}, f is
nondecreasing on I2i = (�ji ; 0i) and f is nonincreasing on I2i+1 = (0i; �ji+1); and f is nondecreasing
on I2k = (�jk ; �]. Since f can be written almost everywhere as f =

∑2k
i=1 )Iif, we have

inf
h∈Pn

∫
I
hf = inf

h∈Pn

2k∑
i=1

∫
Ii

hf¿
2k∑
i=1

inf
h∈Pn

∫
Ii

hf: (14)

For all i∈{1; : : : ; 2k}, Ii is nonempty. There exists an integer N such that for all n¿N , n�(Ii)¿ 2�
for each i. Get n¿N , we deduce from Lemma 1 that

∀i∈{0; : : : ; k − 1}; inf
h∈Pn

∫
I2i+1

hf = n
∫
I2i+1

)(�ji+1−2�=n;�ji+1 )
f; (15)

∀i∈{1; : : : ; k}; inf
h∈Pn

∫
I2i

hf = n
∫
I2i

)(�ji ;�ji+2�=n)f: (16)

Now,

∀�∈ I2i+1; lnf(�)¿− 2d1 ln |�− �ji+1 | − 2d1

i∑
l=1

ln |0i − �jl | − 2d1

k∑
l=i+2

ln |�ji+1 − �jl |;

∀�∈ I2i ; lnf(�)¿− 2d1ln|�− �ji | − 2d1

i−1∑
l=1

ln |�ji − �jl | − 2d1

k∑
l=i+1

ln |0i − �jl |:

Hence, there exist positive constants c1; : : : ; c2k such that

∀�∈ I2i+1; f(�)¿ c2i+1|�− �ji+1 |−2d1 ; (17)

∀�∈ I2i ; f(�)¿ c2i|�− �ji |−2d1 : (18)
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Combining (15) and (17), we get

inf
h∈Pn

∫
I2i+1

hf¿ nc2i+1

∫ �ji+1

�ji+1−2�=n
|�− �ji+1 |−2d1 d�=

c2i+1(2�)1−2d1

1− 2d1
n2d1 (19)

for all i∈{0; : : : ; k − 1}, and using (16) and (18), we obtain

inf
h∈Pn

∫
I2i

hf¿ nc2i

∫ �ji+2�=n

�ji

|�− �ji |−2d1 d�=
c2i(2�)1−2d1

1− 2d1
n2d1 (20)

for all i∈{1; : : : ; k}. Finally, we deduce from (12), (14), (19) and (20), that there exists C¿ 0 such
that �1; n¿Cn2d1 for all n¿N , which is equivalent to the existence of a positive constant C1 such
that �1; n¿C1n2d1 for all n¿ 1.

Let us now study suph∈Pn

∫
I h

Of. We arrange the points �k+1; : : : ; �m in ascending order, �jk+1 ¡ · · ·
¡�jm . According to (10), Of has m− k poles at �jk+1 ; : : : ; �jm and m− k− 1 minima at 21; : : : ; 2m−k−1

such that �jk+i ¡ 2i ¡�jk+i+1 for all i∈{1; : : : ; m − k − 1}. Of is nondecreasing on I1 = [ − �; �jk+1);
for all i∈{1; : : : ; m − k − 1}, Of is nonincreasing on I2i = (�jk+i ; 2i) and Of is nondecreasing on
I2i+1 = (2i; �jk+i+1); and Of is nonincreasing on I2(m−k) = (�jm ; �]. The counterpart of (14) is

sup
h∈Pn

∫
I
h Of6

2(m−k)∑
i=1

sup
h∈Pn

∫
Ii

h Of; (21)

and we deduce from Lemma 1 that for all n¿N , we have

∀i∈{0; : : : ; m− k − 1}; sup
h∈Pn

∫
I2i+1

h Of = n
∫
I2i+1

)(�jk+i+1−2�=n;�jk+i+1 )
Of;

∀i∈{1; : : : ; m− k}; sup
h∈Pn

∫
I2i

h Of = n
∫
I2i

)(�jk+i ;�jk+i+2�=n) Of:

The counterpart of Eqs. (17) and (18) are

∀�∈ I2i+1; Of(�)6 c2i+1|�− �jk+i+1 |−2dm ;

∀�∈ I2i ; Of(�)6 c2i|�− �jk+i |−2dm ;

and using that dm ¡ 1=2, easy calculations show that there exists a positive constant c such that
suph∈Pn

∫
Ii
h Of6 cn2dm for all i∈{1; : : : ; 2(m − k)} and for all n¿N . Finally, using (13) and (21),

we obtain that there exists a positive constant C2 such that �n;n6C2n2dm for all n¿ 1.

The following result is an immediate consequence of Theorem 2, (3) and (4).

Corollary 1. Assume that d1 ¡ 0 and dm ¿ 0 in Theorem 2, then for any ;xed k¿ 1,

�k;n → 0 and 1=�k;n = O(n−2d1);

�n+1−k;n → +∞ and �n+1−k;n = O(n2dm);

as n → ∞.
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Example 1. Let f(�)= |ei�0 −ei�|−2d=(2 sin �−�0
2 )−2d where �0 ∈ (−�; �) and d¡ 0. Then f satis<es

assumptions (i) and (ii) of Theorem 1, and complies with assumption (iii) only when d = −1. It
results from Theorem 1 and Corollary 1 that for any <xed k¿ 1, �k;n ∼ C=n2 when d = −1 and
1=�k;n = O(n−2d) for any d¡ 0, as n → ∞.

3. Applications

Theorem 2 provides informations about the asymptotic behavior of estimates and testing procedures
for generalized fractional processes. Two applications are given below.
Mean estimation. Let (Xt) be a stationary process with mean 
 = E(Xt) and covariance func-

tion (�j) with �0 ¿ 0. The spectral measure of (Xt) is assumed to be absolutely continuous, so that
�j =

∫
I e

ij�f(�) d�. Since �0 ¿ 0, the covariance matrix �n = (�i−j)ni; j=1 is invertible for all n¿ 1.
Consider the problem of estimating 
 as a linear combination of X1; : : : ; Xn. The most popular unbi-
ased estimator of 
 is the sample mean OX n=n−1 ∑n

i=1 Xi, and the BLUE is 
̂n=(u′�−1
n u)−1u′�−1

n X
where u=(1; : : : ; 1)′ and X =(X1; : : : ; Xn)′. We have Var( OX n)=n−2u′�nu and Var(
̂n)=(u′�−1

n u)−1.
If f is piecewise continuous, with no discontinuities at �=0, and 0¡f¡∞, then both OX n and 
̂n

have asymptotic variance 2�f(0)=n as n → ∞ (see Grenander and Rosenblatt, 1957, Section 7.3).
Consider now the case when f diverges at � = 0. Let fd(�) = |1 − ei�|−2d with 0¡d¡ 1=2, and
suppose that function g has the form

g(�) = h(�)
k∏

j=1

|�− �j|−2dj ; (22)

where the �j are distinct values in I , all dj are negative, and h is positive, bounded away from
zero, integrable over I and continuous at � = 0. It was shown by Adenstedt (1974, Theorem 6.1)
that if f(�) = fd(�)g(�) with g(0)¿ 0, then Var(
̂n) ∼ Cn2d−1 as n → ∞. On the other hand,
if 0¡d¡ 1=2 and f(�) = |�|−2db(�) where b is of bounded variation and slowly varying at 0 in
the sense of Zygmund, then �n ∼ Cn2d−1 (see Zygmund, 1959, Section V, Theorem 2.24), and this
implies that Var( OX n) ∼ C ′n2d−1 (see Samarov and Taqqu, 1988, Theorem 2). Now, assume that
f(�)=fd(�)g(�) with 0¡d¡ 1=2 and g is given by (22) where the �j are distinct nonzero values
in (−�; �), all dj are negative and h is positive and bounded away from zero and in<nity. We
deduce from (7) that f satis<es the assumptions in Theorem 2, and thus �n;n6C2n2d for all n¿ 1.
Therefore, Var( OX n)6 �n;n=n6C2n2d−1 and Var(
̂n)6 �n;n=n6C2n2d−1 for all n¿ 1. Compared to
Adenstedt (1974, Theorem 6.1), our result is weaker but does not assume the continuity of h at
�= 0. Similarly, the bound for Var( OX n) does not require the bounded variation and slowly varying
condition.

Example 2. Let (Xt) be an ARFIMA process satisfying the di=erence equation, �(B)(1− B)d(Xt −

) = �(B)t where � and � have no zeroes on the unit circle. If −1=2¡d¡ 0, then �1; n � n2d,
and if 0¡d¡ 1=2, then �n;n � n2d, where un � vn means that there exist some positive con-
stants C1; C2 such that C16 un=vn6C2 for all n¿ 1. This can be proved as follows. Suppose that
−1=2¡d¡ 1=2, d �= 0. Under the assumption that � and � have all their zeroes outside the unit
disk, it was shown by Brockwell and Davis (1991, Theorem 13.2.2) that �n ∼ Cn2d−1 as n → ∞
where C �= 0. In fact, this result can be established similarly under the weakest assumption that �
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and � have no zeroes on the unit circle. Since �n ∼ Cn2d−1, we deduce from the proof of Theorem 2
of Samarov and Taqqu (1988) that Var( OX n) ∼ C ′n2d−1 where C ′¿ 0. Now,

�1; n6 nVar( OX n)6 �n;n:

Hence, there exist some positive constants C1; C2 such that �1; n6C2n2d and �n;n¿C1n2d for all
n¿ 1. Combining these results with the bounds deduced from (6), we obtain the desired result.

Discriminant analysis. Another interesting application of Theorem 2 is in the context of discrimi-
nant analysis for stationary time series (see for example Taniguchi and Kakizawa, 2000, Chapter 7).
Suppose that (Xt) is a real Gaussian process with mean 
t=E(Xt) which may depend on time t, and
a stationary covariance function �j =Cov(Xt+j; Xt) with �0 ¿ 0. The problem is to identify the mean
function 
t between two possible candidates 
1; t and 
2; t . Let X =(X1; : : : ; Xn)′, 
1 = (
1;1; : : : ; 
1; n)′,

2 = (
2;1; : : : ; 
2; n)′, and D the linear discriminant function (LDF),

D(X ) = (
1 − 
2)′�−1
n X − 1

2

′1�

−1
n 
1 +

1
2

′2�

−1
n 
2:

X is classi<ed as having mean 
1 or 
2 according to whether D(X )¿C or D(X )6C where
C is a constant. The misclassi<cation probabilities are P(2|1) = 	(C=6n − 6n=2) and P(1|2)
= 1−	(C=6n+6n=2), where 	 is the cumulative distribution function of the standard normal
distribution, and 62

n = (
1 − 
2)′�−1
n (
1 − 
2) is the Mahalanobis distance. For C = 0, P(2|1)

= P(1|2) = 	(−6n=2) and these probabilities are decreasing in 6n. The LDF is said to be con-
sistent if 	(−6n=2) → 0 as n → ∞, which is equivalent to 6n → ∞ as n → ∞. Assume that
�j =

∫
I e

ij�f(�) d� where f satis<es (5), and let 7 = 
1 − 
2. We deduce from (6) the following
bounds for the Mahalanobis distance,

C−1
2 7′7n−2max(0;dm)662

n6C−1
1 7′7n−2min(0;d1): (23)

Suppose that 7′7 ∼ Cn( as n → ∞ where C¿ 0. We deduce from (23) that the LDF is consistent if
(¿ 2max(0; dm), and it is not consistent if (6 2min(0; d1). Since dm ¡ 1=2, the LDF is consistent
for any (¿ 1. Besides, consider the case where d1 ¿ − 1=2 in Theorem 2 as for instance, for an
invertible generalized ARFIMA process. Then the LDF is not consistent for any (6 − 1. Finally,
if 7′7 ∼ C(n as n → ∞ where C¿ 0 and (¿ 0, we deduce from (23) that the LDF is consistent
if (¿ 1, and is not consistent if (¡ 1.
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