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Abstract

This work establishes bounds for the eigenvalues of the covariance matrix from a general class of stationary
processes. These results are applied to the statistical analysis of the large sample behavior of estimates and
testing procedures of generalized long memory models, including Seasonal ARFIMA and k-factor GARMA
processes, among others.
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1. Introduction

Time series data exhibiting both long memory and cyclical behavior have been extensively
documented during the last decade. For example, these features are present in monetary aggre-
gates (Porter-Hudak, 1990), revenue data (Ray, 1993), inflation rates (Hassler and Wolters, 1995)
and monthly flows of the Nile River (Montanari et al., 2000), among others. To account for this
behavior, a number of models have been proposed. For instance, Porter-Hudak (1990) introduces the
seasonal autoregressive fractionally integrated moving average (SARFIMA) process and Woodward
et al. (1998) propose the k-factor Gegenbauer autoregressive moving average (k-factor GARMA)
process. A SARFIMA process (X;) with period s satisfies the difference equation

P(B)(1 — B)! ®(B*)(1 — B )Y (X, — p) = 0(B)O(B' )i,
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where B is the backward shift operator, s > 2 is an integer, (&) is an uncorrelated zero mean
sequence with variance a2, ¢, @, 0, © are polynomials such that ¢ and @ have no zeroes on the unit
circle, and d +dy < 1/2, dy < 1/2. Under these assumptions, (X;) is stationary with mean u and its
spectral measure is absolutely continuous with respect to dv, the Lebesgue measure on [/ =[ — «, 7t].
The corresponding spectral density f is given by
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where k =[s/2], doy=(d +dy)/2,d;=d, for 1 <j<k—1,dy=d, if sis odd, and d;, =d,/2 if s
is even. A k-factor GARMA process (X;) satisfies the difference equation
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where ¢ has no zeroes on the unit circle, the v; are distinct values in [0, 7], all d; # 0, d; < 1/2
whenever v; # 0 and v; # n, and d; < 1/4 when v; =0 or v; = 7. (X;) is stationary with mean u
and its spectral measure is absolutely continuous with respect to dv with density f given by
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The long memory property of SARFIMA and k-factor GARMA processes is reflected by the peculiar
shape of their spectral density around the frequencies v; with v; =2mj/s for a SARFIMA process.
Indeed, in (1) and (2), f(v) behaves like |v — v;|™2% as v — v;. Thus, when 0 < d; < 1/2, f(v) is
unbounded at v=v;.

In this paper, we consider a (possibly complex-valued) stationary process (JX;) with absolutely
continuous spectral measure whose derivative f satisfies (5) where g is bounded away from zero
and infinity, the v; are arbitrary distinct values in (—=, ) and all d; < 1/2. We establish some bounds
for the eigenvalues Ay ,,...,4,, of the covariance matrix I', = (y;—;); ,—; where y; = fleif"f(v)dv
and n is an arbitrary positive integer. Since I', is positive semidefinite, it is Hermitian and all
Jr.n are nonnegative. By using the interlacing eigenvalues theorem for bordered Hermitian matrices
(see Horn and Johnson, 1991, Theorem 4.3.8), one easily obtain that for any fixed integer & > 1,
the sequences (Ax,)n>x and (A,+1—kn)u>k are respectively nonincreasing and nondecreasing.
Moreover, if we denote by m and M the essential infimum and supremum of f, respectively, it
was shown by Grenander and Szegd (1958, Chapter 5) that 2nm < 4, < 2nM, and that for any
fixed k > 1,

lim /y, =2nm, (3)
n—oo
lim Ayy1 g, = 27M. (4)
n—oo

The limit relation (4) holds also in case M =-+o00. The same authors established the following result
about the order of magnitude of the differences Ay, —2nm and 2nM — 4,4,_4, as n becomes large.
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Theorem 1 (Grenander and Szegd, 1958). Under the following assumptions:

(1) fis continuous on the compact set I and f(—n)= f(n);
(i1) the infimum of f is attained at only one value v = vy (mod2n);
(ii1) f has a continuous second derivative in a certain neighborhood of vy and f"(vy) # 0;

we have for any fixed k =1, Jj, — 2nm ~ C/n* as n — oo where C is a positive constant. A
similar result holds for 2nM — Z,11—f n-

In Theorem 2, we consider a spectral density of special type which is not necessarily continuous
nor bounded on / and we establish some bounds for the eigenvalues 4 ,. In Corollary 1, we consider
the case where m =0 and M = +o0o and we establish some bounds on the rate of convergence of
Jkn to zero, and A, 1k, to 400, respectively, as n — oo and k is fixed. As applications, we show
that the bounds established in Theorem 2 give valuable clues about the asymptotic behavior of the
best linear unbiased estimator (BLUE) of the mean of (X;), the sample mean, and the consistency
of the time series linear discriminant functions (LDF).

This paper is organized as follows. The results on the behavior of the eigenvalues of I', are
presented in Section 2. It starts with a preliminary result, and then proceeds with the main result
contained in Theorem 2. Applications of this theorem to the estimation of the location of the process
(X;) and to the analysis of the consistency of the LDF are discussed in Section 3.

2. Main result

Hereafter, for any set S, we denote by s the indicator function of S.

Lemma 1. Let [ = (a,b) be an interval in R, H the set of functions mapping I into R, c,
d positive real numbers satisfying c¢(b — a) = d, f a monotone integrable function in H, P =
{heH; 0<h<ec, [[h=d}, and « =infcp [, fh, p=sup,cp [, fh. Then, if [ is nonincreasing
(resp. nondecreasing), we have o (resp. p) = cflfﬂ(b,d/c,b), B (resp. a)=c [, faarde)-

Proof. We show that f nonincreasing implies o« = ¢ f] S Ub—dje,p)- The other results are obtained
similarly. Let 7} =(a,b—d/c), L, =(b—d/c,b), hy=c1y,, and he€ P. Since c(b—a) > d, ho € P. We
have [, f(h—ho)= [, fh+ [, f(h—c). Now

fhz fh—diey | h=rb—djey [ (c—h).
I 5 I
Therefore,
[ra=m= [(ro-die)- pxe-n o,
1 L
which means that [, fhg = min,ep [, fh. [

The following theorem applies to a large class of long memory models including both the
SARFIMA and the k-factor GARMA.
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Theorem 2. Let (X;) be a stationary process with absolutely continuous spectral measure whose
derivative f with respect to the Lebesgue measure on I =[ — m, ] satisfies

FO) =g Jle™ — &> (5)

J=1

where function g complies with the boundedness condition 0 < o < g < ff < 0o for some constants
o, B, the v; are distinct values in (—n,n), all d; #0 and d\ < --- <d,, <1/2. Let J1,, <+ < Ay
be the eigenvalues of the covariance matrix I'y = (yi—;)} ,—; where y; = [,V f(v)dv. Then there
exist positive constants Cy, Cy such that

Cln2min(0,d1) < )Lkn < C2n2max(0,dm) (6)
for all n > 1 and for all k€ {1,...,n}.
Proof. Let f;(v)=|e™ —e"”|724. If d; > 0, f; is positive, has a pole at v=v; and is continuous on
I\ {v}; thus f; > a; > 0 for some constant a;. If d; <0, f; has a zero at v=v; and is continuous
on /; thus f; < b; < oo for some constant b;. Therefore, we deduce from (5) that f >a > 0 if

di >0, and f <b< o0 if d, <0, for some constants a,b. Assume that d; <0 and d,, > 0, and
let £ be the integer such that d; < 0 < d;;. We have

k k
aIIH |eivj _ eiv’—2d1 < a H |eiv,- _ eiv|—2dj < f(v)
j=1 j=1

m m
/ iv: wl— . Y/ 1v; v|—
<bh H |CW’ _ e1v| 2d,; <b H |C”’ — elV[2dn

j=k+1 j=k+1

for some positive constants a”,a’,b’,b”. Now,

sin(—HZlV’ ‘) sin(—‘;vj ) oV _ oy
Ywel 0< < = <1 7
b tyl T V= y—v: | (7)
2 2 J

Therefore, there exist positive constants @, b such that

af < f <bf, (8)
where
k
SO =T Iv=wl", 9)
j=1
Foy="T11 v—vil>" (10)
j=k+1

We are going to show that there exist C; > 0 and C, > 0 such that 4,, > Cyn2min(0.d1) apd
I < Con?™0dn) for all n > 1. Let n> 1 and 4 = {x € C";x*x = 1} where x* is the transpose
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conjugate of x. Since I', is Hermitian, we have /;, = min,c¢x*I',x and 4,, = max,cqx*[,x. Let
x=(x1,...,x,) €%, we have

n n 2
x'Ix = Z X Vk—iX] = / Zxke_il”
ki=1 I k=1

If dy >0, f >a>0 and we deduce from (11) that x*I',x > 2mna, so that 4;, > 2na. Similarly, if
dn <0, f <b<oo and we get that 4,, <2nb. In what follows, we study the case d; <0 and
dy > 0. Let H be the set of functions mapping / into R and P,={h€H; 0 <h <n, [,h=2n}. The
function v — | >/_, xie~*|? belongs to P,. Therefore, we deduce from (11) that 4, , > infjecp, f1 hf
and A, , < sup,cp, f, hf. Since any h € P, is nonnegative, it results from (8) that

S(v)dv. (11)

iz ajnf [0, (12)

Jnn < b sup /h_f. (13)
heP, JI

Let us first study infjecp, fl hf. We arrange the points vy, ..., v, in ascending order, v;, <--- < V.

According to (9), f has k zeroes at v;,,...,v;, and k—1 maxima at ¢y,..., - such that v; <& <v;,
for all ic{l,....,k — 1}. f is nonincreasing on I; =[ — m,v;); for all ic{l,....,k — 1}, f is
nondecreasing on /; = (vj,,¢;) and J is nonincreasing on ;41 = (&, vj,,); and J is nondecreasing
on by = (vj,n]. Since f can be written almost everywhere as f = E,ZL 1, f, we have

op [ > [0S [or 04)

For all i € {1,...,2k}, I; is nonempty. There exists an integer N such that for all n > N, nv(l;) > 2n
for each i. Get n > N, we deduce from Lemma 1 that

Vie {0, . ,k — 1},}113}2 /121.4rl hi =n /IziH ﬂ(v.fi+1 _27[/,1")/.1_“)1, (15)
Vie {1, e ,k}, inf / hf = n/ ﬂ(v,-.,v,-.—«—Zn/n)f- (16)
hePy Jp, L o
Now,

i k
WV E L, Inf(v) = = 2dyIn|v — v, | = 2d1 Y In[& — vl —2dy > Infv;, — v,

=1 I=i+2
k
Vv € LyIn f(v) = — 2dyIn|y — v;| — 2d, Zln Vi, = vl = 2dy Y In|& — vy
I=i+1

Hence, there exist positive constants ci,...,cy such that

WV E b1, f(v) = carpr[v — vy, |72, (17)

YWe b, f(v) > ey — v, |72 (18)
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Combining (15) and (17), we get

. Vi - i1 (2m)! 20
f hf = ncy; —y [T dy = L 19
hlan /IZHI 1 ne) +1 /ijlzn/n ‘v v]t+l‘ v 1 . 2d1 n ( )
for all i € {0,...,k — 1}, and using (16) and (18), we obtain
vj;+2m/n c _(2n)1—2d1
: 2 . . —2d4 — 2i 2d,
hlglg /12[ hf = ncy /, [v— v dy 124 n (20)

for all i € {1,...,k}. Finally, we deduce from (12), (14), (19) and (20), that there exists C > 0 such
that 4, , > Cn*? for all n > N, which is equivalent to the existence of a positive constant C; such
that 4, , = C;n*" for all n > 1.

Let us now study sup,cp flh f. We arrange the points v, 1,...,V, in ascending order, Vi, <o
<,,. According to (10), f_ has m —k poles at v, ,...,v;, and m —k — 1 minima at n,...,0u—s—1
such that v;,, <mn; <v,,,, forall ie{l,....om—k —1}. f is nondecreasing on I, =[ — =, Vi )s
for all i€{l,...,m —k — 1}, f is nonincreasing on I, = (vj,.,,n;) and f is nondecreasing on
b1 =i, V)., ); and f is nonincreasing on /rg,—x) = (vj,, 7]. The counterpart of (14) is

2>m—k)
sup/hf< Z sup/hf, (21)
heP, J1 = hep, JI;

and we deduce from Lemma 1 that for all » > N, we have

Vie {0, oo, — k— 1}, sup / hf_ = n/ ﬂ(vflc+i+l —2”/”7"/k+i+1 )f_,

hePy J Ly biy

Vie{l,...,m—k},sup / hf = n/ ﬂ(v‘/k+i,»’jk+[+2n/n)f'
b b

hePﬂ

The counterpart of Egs. (17) and (18) are
vv S 12i+19f_(v) < Coitl ’V - vjk+i+l ‘*de’
Vv e Ly, (V) < earl v — v [T,

and using that d, < 1/2, easy calculations show that there exists a positive constant ¢ such that
sup,cp, [, hf < en®™ for all i€ {1,...,2(m —k)} and for all n > N. Finally, using (13) and (21),
we obtain that there exists a positive constant C; such that 4,, < Con?¥ for all n > 1. 0O

The following result is an immediate consequence of Theorem 2, (3) and (4).

Corollary 1. Assume that d; <0 and d,, > 0 in Theorem 2, then for any fixed k > 1,
Jin — 0 and 1/l = O(n~2M),
Jnit—kn — 00 and Jyii—n = O(n*™m),

as n — oQ.
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Example 1. Let f(v)=[e" —e"|72/ =(2sin v‘%)*zd where vy € (—n, ) and d < 0. Then f satisfies
assumptions (i) and (ii) of Theorem 1, and complies with assumption (iii) only when d = —1. It
results from Theorem 1 and Corollary 1 that for any fixed k > 1, A, ~ C/n*> when d = —1 and
1/24n =O(n=24) for any d < 0, as n — oo.

3. Applications

Theorem 2 provides informations about the asymptotic behavior of estimates and testing procedures
for generalized fractional processes. Two applications are given below.

Mean estimation. Let (X;) be a stationary process with mean p = E(X;) and covariance func-
tion (7y;) with y9 > 0. The spectral measure of (X;) is assumed to be absolutely continuous, so that
V= fleij"f(v)dv. Since yo > 0, the covariance matrix I', = (y;—;);,, 1s invertible for all n > 1.
Consider the problem of estimating y as a linear combination of Xi,...,.X,. The most popular unbi-
ased estimator of y is the sample mean X, =n~'>"" | X;, and the BLUE is 4, = /I, 'u)""/'I';'X
where u=(1,...,1) and X =(X,...,X,). We have Var(X,)=n"2u'T',u and Var(f,)=/'T; 'u)~".
If f is piecewise continuous, with no discontinuities at v=0, and 0 < f < oo, then both X, and f,
have asymptotic variance 27 f(0)/n as n — oo (see Grenander and Rosenblatt, 1957, Section 7.3).
Consider now the case when f diverges at v=0. Let f4(v) = |1 —€"|72¢ with 0 <d < 1/2, and
suppose that function g has the form

k
g =hM ][] I — v, (22)
J=1
where the v; are distinct values in /, all d; are negative, and % is positive, bounded away from
zero, integrable over / and continuous at v = 0. It was shown by Adenstedt (1974, Theorem 6.1)
that if f(v) = fu(v)g(v) with g(0) > 0, then Var(fi,) ~ Cn**~! as n — oco. On the other hand,
if 0 <d <1/2 and f(v) = |v|72?b(v) where b is of bounded variation and slowly varying at 0 in
the sense of Zygmund, then 7, ~ Cn??~! (see Zygmund, 1959, Section V, Theorem 2.24), and this
implies that Var(X,) ~ C'n**~! (see Samarov and Taqqu, 1988, Theorem 2). Now, assume that
S()= fa(v)g(v) with 0 <d < 1/2 and g is given by (22) where the v; are distinct nonzero values
in (—m, ), all d; are negative and /4 is positive and bounded away from zero and infinity. We
deduce from (7) that f satisfies the assumptions in Theorem 2, and thus /,, < Con* for all n > 1.
Therefore, Var(X,) < A,../n < Con*~! and Var(fi,) < Ay./n < Con**~! for all n > 1. Compared to
Adenstedt (1974, Theorem 6.1), our result is weaker but does not assume the continuity of /4 at
v =0. Similarly, the bound for Var(X,) does not require the bounded variation and slowly varying
condition.

Example 2. Let (X;) be an ARFIMA process satisfying the difference equation, ¢(B)(1 — B)4(X; —
@) = 0(B)e; where ¢ and 0 have no zeroes on the unit circle. If —1/2 <d <0, then 4, < n?,
and if 0 <d < 1/2, then 4,, =< n*?, where u, < v, means that there exist some positive con-
stants C;, C, such that C; < u,/v, < C, for all n = 1. This can be proved as follows. Suppose that
—1/2 <d < 1/2, d # 0. Under the assumption that ¢ and 0 have all their zeroes outside the unit
disk, it was shown by Brockwell and Davis (1991, Theorem 13.2.2) that y, ~ Cn?*~! as n — oo
where C # 0. In fact, this result can be established similarly under the weakest assumption that ¢
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and 0 have no zeroes on the unit circle. Since y, ~ Cn**~! we deduce from the proof of Theorem 2
of Samarov and Taqqu (1988) that Var(X,) ~ C'n**~! where C’ > 0. Now,

i < nVar(X,) < Jn.n-

Hence, there exist some positive constants Cj,C, such that 4;, < Con*? and I = Cyn*¢ for all
n = 1. Combining these results with the bounds deduced from (6), we obtain the desired result.

Discriminant analysis. Another interesting application of Theorem 2 is in the context of discrimi-
nant analysis for stationary time series (see for example Taniguchi and Kakizawa, 2000, Chapter 7).
Suppose that (X;) is a real Gaussian process with mean y, = E(X;) which may depend on time ¢, and
a stationary covariance function y; = Cov(X,1;,X;) with yo > 0. The problem is to identify the mean
function u, between two possible candidates p, and pp,. Let X =(X1,....X,), w1 = 15> 1),
o= (t2.1,--->2,), and D the linear discriminant function (LDF),

_ 1 _ 1 _
DX)= (i — )T, 'X — Elillf,, "+ Eugl”n "o,

X is classified as having mean u; or pu, according to whether D(X) > C or D(X) < C where
C is a constant. The misclassification probabilities are P(2|1) = &(C/4, — 4,/2) and P(1]2)
= 1-9(C/4,+4,/2), where & is the cumulative distribution function of the standard normal
distribution, and 42 = (u; — o) I'; (1 — o) is the Mahalanobis distance. For C = 0, P(2|1)
= P(1|2) = &(—4,/2) and these probabilities are decreasing in 4,. The LDF is said to be con-
sistent if &(—4,/2) — 0 as n — oo, which is equivalent to 4, — oo as n — oco. Assume that
Y= fleif"f(v)dv where f satisfies (5), and let 6 = yy — u;. We deduce from (6) the following
bounds for the Mahalanobis distance,

C;lé/én—Zmax(O,dm) < Ai < C;lé/an—2min(0,dl). (23)

Suppose that 6’6 ~ Cn” as n — oo where C > 0. We deduce from (23) that the LDF is consistent if
p > 2max(0,d,,), and it is not consistent if § < 2min(0,d;). Since d,, < 1/2, the LDF is consistent
for any f > 1. Besides, consider the case where d; > — 1/2 in Theorem 2 as for instance, for an
invertible generalized ARFIMA process. Then the LDF is not consistent for any 5 < — 1. Finally,
if 6’60 ~ CB" as n — oo where C >0 and f > 0, we deduce from (23) that the LDF is consistent
if f > 1, and is not consistent if f < 1.
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