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Abstract. This paper studies asymptotic properties of the exact maximum likelihood
estimates (MLE) for a general class of Gaussian seasonal long-range-dependent processes.
This class includes the commonly used Gegenbauer and seasonal autoregressive
fractionally integrated moving average processes. By means of an approximation of the
spectral density, the exact MLE of this class are shown to be consistent, asymptotically
normal and efficient. Finite sample performance of these estimates is examined by Monte
Carlo simulations and it is shown that the estimates behave very well even for moderate
sample sizes. The estimation methodology is illustrated by a real-life Internet traffic
example.
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1. INTRODUCTION

Several statistical methodologies have been developed to model time series
exhibiting both cyclical and long-memory properties. Abrahams and Dempster
(1979) and Jonas (1979) generalize Madelbrot’s fractional Gaussian noise
process to allow for an infinite spectrum at seasonal frequencies, Gray et al.
(1989) propose the generalized fractional or Gegenbauer [generalized
autoregressive moving average (GARMA)] processes, Porter-Hudak (1990)
discusses seasonal fractionally integrated autoregressive moving average
(SARFIMA) models, Hassler (1994) introduces the flexible seasonal
fractionally integrated processes (flexible ARFISMA) and Woodward et al.
(1998) introduce the k-GARMA processes.

Estimation methods and statistical properties of non-seasonal long-memory
processes have been investigated by Yajima (1985) and Dahlhaus (1989), among
others. On the contrary, seasonal long-range-dependent models have been studied
by Giraitis and Leipus (1995), Chung (1996), Arteche and Robinson (2000),
Velasco and Robinson (2000), Giraitis et al. (2001), and Ould Haye (2002) among
others. Long-range-dependent data with seasonal behaviour have been reported
in diverse fields. For example, inflation rates are studied by Hassler and Wolters
(1995), revenue series are analysed by Ray (1993), monetary aggregates are
considered by Porter-Hudak (1990), quarterly gross national product and
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shipping data are discussed by Ooms (1995), and monthly flows of the Nile River
are studied by Montanari et al. (2000).

This paper studies the asymptotic properties of the maximum likelihood
estimate (MLE) of a general class of Gaussian seasonal long-memory processes
with spectral densities specified by

f ðxÞ ¼ HðxÞjxj�a
Yr
i¼1

Ymi

j¼1

jx� xijj�ai ; ð1Þ

where x 2 (–p, p], 0 � a, ai < 1, i ¼ 1, . . . , r, H(x) is a symmetric, strictly
positive, continuous and bounded function and xij 6¼ 0 are known poles for
j ¼1, . . . ,mi, i ¼ 1, . . . , r. To ensure the symmetry of f, we assume that for any
i ¼1, . . . , r, j ¼ 1, . . . ,mi, there is one and only one 1 � j 0 � mi such that xij ¼
–xij0. The spectral density of many widely used models such as SARFIMA and
k-factor GARMA satisfy specification (1). As a first example, consider a
seasonal ARFIMA model with multiple periods s1, . . . , sr:

/ðBÞð1� BÞd
Yr
i¼1

UðBsiÞð1� BsiÞdsi xt ¼ hðBÞ
Yr
i¼1

HðBsiÞet; ð2Þ

where B is the backshift operator, and /(B), U(Bsi), h(B) and H(Bsi) are
autoregressive and moving average polynomials. Observe that the spectral density
of process (2) may be written as

fs1;...;srðxÞ ¼ HðxÞjxj�2d�2ds1�����2dsr
Yr
i¼1

Ysi
j¼1

jx� xijj�2dsi ; ð3Þ

which is a special case of eqn (1). The corresponding parameters are

xij ¼ 2pj=si; for i ¼ 1; . . . ; r; j ¼ 1; . . . ;
si
2

h i
;

xij ¼
2pð½si2� � jÞ

si
; for i ¼ 1; . . . ; r; j ¼ si

2

h i
þ 1; . . . ; si;

a ¼ 2d þ 2ds1 þ � � � þ 2dsr and ai ¼ 2dsi :

As a second example, note that the spectral density of a k-GARMA process is
given by, Woodward et al. (1998),

f ðxÞ ¼ CjhðeixÞj2j/ðeixÞj�2
Yk
j¼1

½cosðxÞ � uj��2kj ; ð4Þ

where C > 0 is a constant, uj are distinct values, kj 2 ð0; 14Þ when |uj| ¼ 1 and
kj 2 ð0; 12Þ when |uj| 6¼ 1. For |uj| � 1, we may write uj ¼ cos (xj) and this
spectral density may be written in terms of eqn (1) as follows:
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f ðxÞ ¼ HðxÞ
Yk
j¼1

jx� xjj�2kj jxþ xjj�2kj ;

where

HðxÞ ¼ CjhðeixÞj2j/ðeixÞj�2
Yk
j¼1

cosðxÞ � cosðxjÞ
x2 � x2

j

�����
�����
�2kj

is a strictly positive, symmetric, continuous function with

lim
x!�xl

HðxÞ ¼ CjhðeixlÞj2j/ðeixlÞj�2
Yk
j6¼l

cosðxlÞ � cosðxjÞ
x2

l � x2
j

�����
�����
�2kj

sinðxlÞ
2xl

����
����
�2k

;

for xl 6¼ 0 and

lim
x!�xl

HðxÞ ¼ 4klCjhðeixlÞj2j/ðeixlÞj�2
Yk
j6¼l

cosðxlÞ � cosðxjÞ
x2

l � x2
j

�����
�����
�2kj

;

for xl ¼ 0. Observe that all these limits are finite and H(x) is a bounded function.
In this paper, we prove that the exact MLE for a Gaussian process with

spectral density satisfying eqn (1) is consistent, asymptotically normal and
efficient in the sense of Fisher, i.e. its variance attains the Cramér–Rao lower
bound. The method for obtaining these results is based on an approximation
of the spectral density proposed by Hannan (1973). Details of the proof are
discussed in the beginning of Section 2. Note that expression (1) is fairly
general and encompasses a wide variety of seasonal long-memory models (see,
e.g. Leipus and Viano, 2000). Because of the poles other than zero in eqn (1),
results of Dahlhaus (1989) for the exact MLE of non-seasonal long-range-
dependent processes are not directly applicable. In particular, Dahlhaus�
conditions (A2), and (A4) to (A9) do not hold in the presence of multiple
singularities. As a result, one may have to reprove all the technical lemmas
used by Fox and Taqqu (1987) and Dahlhaus (1989) to deal with the seasonal
case (1). On the contrary, using the idea of Hannan (1973), the spectral density
(1) can be approximated by a well-behaved function around the seasonal poles.
Moreover, this idea may prove to be useful for establishing limiting properties
of estimates for other general classes of time-series models.

This paper proceeds as follows. In Section 2, the consistency, a central limit
theorem and the asymptotic efficiency of MLE of a model satisfying (1) are
derived. Finite sample performance of MLE is investigated in Section 3, where the
results from several Monte Carlo studies are exhibited. An Internet traffic data
example that illustrates the proposed methodology is discussed in Section 4 and
concluding remarks are presented in Section 5. Proofs of the technical lemmas
needed to prove Theorems 1–3 are given in the Appendix.
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2. MAXIMUM LIKELIHOOD ESTIMATION

Large-sample properties of MLE of Gaussian seasonal long-range-dependent
processes are investigated in this section. Based on an argument used by Hannan
(1973), the spectral density (1) with multiple singularities is approximated by the
following density having a pole only at zero frequency:

fgðxÞ ¼ HðxÞjxj�a
Yr
i¼1

½ð1� gÞ2 þ g
Ymi

j¼1

jx� xijj��ai : ð5Þ

Observe that this spectral density corresponds to eqn (1) when g ¼ 1. For
0 < g < 1, eqn (5) does not have poles at frequencies other than zero, and as a
result, the MLE for such a process is consistent, asymptotically normal and
efficient. Using this observation together with the fact that fg converges to f as g
tends to 1 in the sense specified by Lemma 1, we show that the MLE based on the
spectral density (1) is asymptotically normal and efficient. Specifically, Lemmas 1
and 2 deal with the convergence of the approximated density and related results
for the covariance matrices. Lemma 3 shows an inequality that is used to establish
Lemma 6. Lemmas 4 and 5 deal with the convergence of matrix product traces,
whereas Lemmas 6 and 7 are used to establish the limiting behaviour of variance–
covariance matrices as the sample size increases. The consistency of the MLE is
proved in Theorem 1, asymptotic normality is derived in Theorem 2, and the
efficiency of the MLE is established in Theorem 3.

Herein, we assume that the spectral density depends on the parameter h,
denoted by fh, and that the parameter space H � RJ is compact. The symbol K
denotes a generic positive constant, the actual value of which may vary from step
to step. Furthermore, to shorten the proofs in this paper, we made use of some of
the technical arguments given by Dahlhaus (1989) that are unaffected by the
failure of Assumptions (A2) and (A4)–(A9).

2.1. Consistency

This section focuses on proving the convergence of the MLE, ĥn, to the true
parameter h0 (see Theorem 1). In what follows, kÆk and jÆj denote the spectral and
the Euclidean norm, respectively, i.e.

kAk ¼ sup
kxk¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x0A0Ax

p
and jAj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðAA0Þ

p
:

In addition, if A is a vector of matrices A ¼ [A1, . . . ,Ap]
0 then jjjAjjj denotesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

j¼1 kAjk2
q

.

Let
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½T ðfhÞ�r;s¼1;...;n ¼
Z p

�p
fhðxÞeixðr�sÞdx

be the covariance matrix of the observation series X ¼ (x1, . . . , xn)
0. Unless

otherwise stated, we write T(fh) as T and T(fg,h) as Tg herein. Let Ln(h) be –1/n
times the loglikelihood function based on the spectral density f (omitting a
constant):

LnðhÞ ¼
1

2n
log det T ðfhÞ þ

1

2n
X0T ðfhÞ�1

X:

With the previous notations and Lemmas 1 and 2 in the Appendix we are now
ready to derive the consistency of the MLE.

Theorem 1. (Consistency) ĥn !p h0 as n ! 1.

Proof. Following Basawa et al. (1976) and Ling and Li (1997), it suffices to
prove that: (i) rLn(h0) !p 0, as n ! 1; (ii) there exists a positive definite matrix
M(h0) such that for all � > 0,

P ðr2Lnðh0Þ > Mðh0ÞÞ > 1� �; for all n > nð�Þ;

and (iii) there exists a constant 0 < M < 1 such that

Ejr3LnðhÞj < M for all h 2 H:

We prove that conditions (i)–(iii) hold in this case. (i)

E½rLnðh0Þ� ¼
1

2n
trfT ðfh0Þ

�1T ðrfh0Þg �
1

2n
tr T ðfh0ÞA

ð3Þ
h0

n o
;

where Að3Þ
h0

is defined as in Lemma 6. But,

T ðfh0ÞA
ð3Þ
h0

¼ T ðrfh0ÞT ðfh0ÞÞ
�1:

Hence E [rLn(h0)] ¼ 0. On the other hand,

var½rLnðh0Þ� ¼
1

2n2
trfT ðfh0Þ

�1T ðrfh0ÞT ðfh0Þ
�1T ðrfh0Þg:

But, by Lemma 5 we have

1

n
trfT ðfh0ÞÞ

�1T ðrfh0ÞT ðfh0ÞÞ
�1T ðrfh0Þg

! 1

2p

Z p

�p
½r log fh0ðxÞ�½r log fh0ðxÞ�

0dx;

as n ! 1. Therefore, var[rLn(h0)] ! 0 and the result holds by virtue of the
Chebyshev’s inequality. (ii) Observe that
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E½r2Lnðh0Þ� ¼
1

2n
trfT ðfh0Þ

�1T ðrfh0ÞT ðfh0Þ
�1T ðrfh0Þg:

Hence, by Lemma 5 we have

E½r2Lnðh0Þ� !
1

4p

Z p

�p
½r log fh0ðxÞ½r log fh0ðxÞ�

0dx � Cðh0Þ:

On the other hand,

var½r2Lnðh0Þ� ¼
1

2n2
trf½T ðfh0ÞÞð2A

ð1Þ
h0

� Að2Þ
h0
Þ�2g

where the matrices Að1Þ
h0

and Að2Þ
h0
Þ are defined as in Lemma 6. Then, an application

of Lemma 5 establishes that var[r2Ln(h0)] ! 0. Thus, r2Ln(h0) !p C(h0).
Besides, since C(h0) is positive-definite, we can choose the positive-definite matrix
M(h0) � C(h0) – jI with 0 < j < kmin (C(h0)) and the result holds.

(iii) Note that

r3LnðhÞ ¼ 1

n
trfT ðfhÞ�1T ðrfhÞT ðfhÞ�1T ðrfhÞT ðfhÞ�1T ðrfhÞg

þ 1

2n
trfT ðfhÞ�1T ðr3fhÞg

� 3

2n
trfT ðfhÞ�1T ðrfhÞT ðfhÞ�1T ðr2fhÞg

þ 1

2n
X0½3T ðfhÞ�1T ðr2fhÞT ðfhÞ�1T ðrfhÞT ðfhÞ�1:

þ 3T ðfhÞ�1T ðrfhÞT ðfhÞ�1T ðr2fhÞT ðfhÞ�1

� 6T ðfhÞ�1T ðrfhÞT ðfhÞ�1T ðrfhÞT ðfhÞ�1T ðrfhÞT ðfhÞ�1

� T ðfhÞ�1T ðr3fhÞT ðfhÞ�1�X:

But,

jX0T ðrfhÞXj ¼
Z p

�p
rfh

����
����Xn
j¼1

eixjXj
2dx
�� ��

�
Z p

�p
jrfhj

Xn
j¼1

eixjXj

�����
�����
2

dx ¼ X0T ðjrfhjÞX;

where

jrfhj ¼ ðj@fh=@h1j; . . . ; j@fh=@hJ jÞ:

Analogously,

jX0T ðr2fhÞXj � X0T ðjr2fhjÞX and jX0T ðr3fhÞXj � X0T ðjr3fhjÞX:

Therefore,
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jr3Lnðhj �
1

n
trfT ðfhÞ�1T ðjrfhjÞT ðfhÞ�1T ðjrfhjÞT ðfhÞ�1T ðjrfhjÞg

þ 1

2n
trfT ðfhÞ�1T ðjr3fhjÞg

þ 3

2n
trfT ðfhÞ�1T ðjrfhjÞT ðfhÞ�1T ðjr2fhjÞ

þ 1

2n
X0 3T ðfhÞ�1T ðjr2fhjÞT ðfhÞ�1T ðjrfhjÞT ðfhÞ�1
h

þ 3T ðfhÞ�1T ðjrfhjÞT ðfhÞ�1T ðjr2fhjÞÞT ðfhÞ�1

þ 6T ðfhÞ�1T ðjrfhjÞT ðfhÞ�1T ðjrfhjÞT ðfhÞ�1T ðjrfhjÞT ðfhÞ�1

þ T ðfhÞ�1T ðjr3fhjÞT ðfhÞ�1
i
X;

and

Ejr3Lnðhj �
4

n
trfT ðfhÞ�1T ðjrfhjÞT ðfhÞ�1T ðjrfhjÞT ðfhÞ�1T ðjrfhjÞg

þ 1

n
trfT ðfhÞ�1T ðjr3fhjÞg

þ 9

2n
trfT ðfhÞ�1T ðjrfhjÞT ðfhÞ�1T ðjr2fhjÞgg:

Now, by an argument similar to Dahlhaus (1989, p. 1758), we conclude that the
first summand is bounded by

1

n
tr T Kjxj�aþ�

Yr
i¼1

Ymi

j¼1

jx� xijj�aiþ�i

 !�1
8<
:
2
4

� T Kjxj�a��
Yr
i¼1

Ymi

j¼1

jx� xijj�ai��i

 !)3
3
5:

where �, �1, . . . , �r > 0 can be chosen arbitrarily small. By Lemma 5, this term
converges to

K
Z p

�p
jxj�3�

Yr
i¼1

Ymi

j¼1

jx� xijj�3�i � K1 < 1:

The other two summands can be bounded similarly by constants K2 and K3,
respectively. The result follows by choosing M ¼ maxfK1, K2, K3g. h
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2.2. Asymptotic normality

A central limit theorem of the MLE is established in this section. The main result
is stated in Theorem 2. The proof of this result requires Lemmas 3–7 shown in the
Appendix.

Theorem 2 (Central limit theorem). The maximum likelihood estimate, ĥn,
satisfies the following limiting distribution as n ! 1:ffiffiffi

n
p

ðĥn � h0Þ !D Nð0;Cðh0Þ�1Þ;

Cðh0Þ ¼
1

4p

Z p

�p
½r log fhðxÞ�½r log fhðxÞ�0dx: ð6Þ

Proof. It suffices to show that:

(i)
ffiffiffi
n

p
rLnðh0Þ !D Nð0;Cðh0ÞÞ;

(ii) jr2LnðĥnÞ � r2Lnðh0Þj !p 0 as ĥn !p h0;

and

(iii) r2Lnðh0Þ !p Cðh0Þ; with g ¼ gðnÞ ¼ 1� n�d;

for some d such that dp > 1 with p as in Lemma 1. Part (i) follows from the
product of cumulants (see Taniguchi and Kakizawa, 2000 p. 54 and p. 168ff):

n covðrLnðh0Þ;rLnðh0ÞÞ ¼
1

2n
trfT ðfh0Þ

�1T ðrfh0ÞT ðfh0Þ
�1T ðrfh0Þg:

By Lemma 5, this term converges to C(h0). By the same lemma,

np=2cumfLnðh0Þj1 ; . . . ;Lnðh0Þjpg;

converges to zero, as n ! 1. Result (ii) is a consequence of the equicontinuity of
the quadratic form ZðiÞ

n , (see Lemma 7) and from Lemma 5. Finally, part (iii)
follows from the proof of Theorem 1, since E [r2Ln(h0)] ! C(h0) and
varr2Ln(h0) tends to zero as n ! 1. h

Theorem 3 (Efficiency). The maximum likelihood estimate, ĥn, is asymptotically
an efficient estimate of h0.

Proof. It suffices to prove that the Fisher information matrix n–1Cn(h0)
converges to the variance of the estimates, C(h0), as n ! 1. But, this follows
directly from part (ii) of the proof of Theorem 1, since
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n�1Cnðh0Þ ¼ n Ef½rLnðh0Þ�½rLnðh0Þ�0g

¼ 1

2n
trfT ðfh0Þ

�1T ðrfh0ÞT ðfh0Þ
�1T ðrfh0Þg;

which tends to C(h0) as n ! 1. h

3. MONTE CARLO EXPERIMENTS

In order to assess the finite sample performance of the MLEs, a number of Monte
Carlo simulations are conducted for the class of SARFIMA models described by
eqn (2).

Tables I–VI show the results from simulations for
SARFIMA(0, d, 0) � (0, ds, 0)s processes for different values of d, ds, sample
size n, seasonal period s and r2e ¼ 1. We choose this class of models to examine the
finite sample behaviour of the estimates. Furthermore, the finite sample
performance of the MLE is compared with the Whittle estimate and the
Kalman filter approach with truncations m ¼ 60 and m ¼ 120. This simulation
setup is considered for finite sample comparison purposes because the asymptotic
theory developed in this paper applies only to the exact MLE case. Finite sample
performances of a number of other estimation techniques for fractional seasonal
models are studied in two recent papers by Reisen et al. (2005a, b).

The results are based on 1000 repetitions, with seasonal series generated using
the Durbin–Levinson algorithm with zero-mean Gaussian noise. The
autocovariance function was computed by the convolution method of Bertelli
and Caporin (2002). In order to explore the effect of the estimation of the mean
we considered two situations: known mean where the process is assumed to be
have zero mean and unknown mean where the expected value of the process is
estimated by the sample mean and then centred before the computations.

The exact MLE method has been implemented computationally by means of
the Durbin–Levinson algorithm (see Brockwell and Davis, 1991, Sect. 5.2) with
autocovariance calculated by the Bertelli and Caporin (2002) approach.

The Whittle method has been implemented by minimizing the expression, cf.
Giraitis et al. (2001):

SðhÞ ¼ 2

n

X½n=2�
k¼1

IðxkÞ
fhðxkÞ

;

where h ¼ (d,ds) and xk ¼ 2pk/n, with periodogram given by

IðxkÞ ¼
1

2pn

Xn
t¼1

xteitxk

�����
�����
2

;
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and spectral density

fhðxÞ ¼
1

2p
j1� eitxj�2d j1� eitxsj�2ds :

TABLE I

Estimates of d and ds for d ¼ 0.3, ds ¼ 0.1 and s ¼ 6

n Stat.

Estimators

Exact Whittle Kalman (60) Kalman (120)

Known mean
256 Mean(d̂) 0.2946 0.2617 0.3026 0.3005

Std(d̂) 0.0476 0.0596 0.0512 0.0497
Mean(d̂s) 0.0952 0.0611 0.0983 0.0990
Std(d̂s) 0.0469 0.0493 0.0500 0.0494

512 Mean(d̂) 0.2968 0.2815 0.3048 0.3030
Std(d̂) 0.0339 0.0398 0.0366 0.0370
Mean(d̂s) 0.0979 0.0779 0.0983 0.1007
Std(d̂s) 0.0341 0.0370 0.0365 0.0365

Unknown mean
256 Mean(d̂) 0.2788 0.2626 0.2861 0.2891

Std(d̂) 0.0506 0.0591 0.0499 0.0512
Mean(d̂s) 0.0853 0.0610 0.0833 0.0834
Std(d̂s) 0.0461 0.0474 0.0465 0.0476

512 Mean(d̂) 0.2890 0.2800 0.2841 0.2857
Std(d̂) 0.0350 0.0393 0.0351 0.0344
Mean(d̂s) 0.0909 0.0787 0.0909 0.0921
Std(d̂s) 0.0351 0.0378 0.0377 0.0370

TABLE II

Estimates of d and ds for d ¼ 0.3, ds ¼ 0.1 and s ¼ 10

n Stat.

Estimators

Exact Whittle Kalman (60) Kalman (120)

Known mean
256 Mean(d̂) 0.2933 0.2589 0.3007 0.2989

Std(d̂) 0.0461 0.0594 0.0505 0.0479
Mean(d̂s) 0.0966 0.0630 0.0999 0.1008
Std(d̂s) 0.0477 0.0497 0.0509 0.0510

512 Mean(d̂) 0.2962 0.2806 0.3058 0.2996
Std(d̂) 0.0332 0.0383 0.0381 0.0369
Mean(d̂s) 0.0957 0.0798 0.0985 0.0975
Std(d̂s) 0.0364 0.0379 0.0381 0.0360

Unknown mean
256 Mean(d̂) 0.2753 0.2581 0.2734 0.2764

Std(d̂) 0.0525 0.0595 0.0462 0.0462
Mean(d̂s) 0.0864 0.0618 0.0905 0.0921
Std(d̂s) 0.0450 0.0477 0.0490 0.0484

512 Mean(d̂) 0.2877 0.2799 0.2819 0.2844
Std(d̂) 0.0355 0.0383 0.0367 0.0357
Mean(d̂s) 0.0904 0.0762 0.0941 0.0955
Std(d̂s) 0.0349 0.0368 0.0361 0.0363
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The approximate Kalman filter MLEs are based on a finite state–space
representation of the truncated MA(1) expansion

TABLE III

Estimates of d and ds for d ¼ 0.2, ds ¼ 0.2 and s ¼ 6

n Stat.

Estimators

Exact Whittle Kalman (60) Kalman (120)

Known mean
256 Mean(d̂) 0.1962 0.1604 0.2004 0.2001

Std(d̂) 0.0492 0.0594 0.0516 0.0508
Mean(d̂s) 0.1931 0.1635 0.1975 0.1998
Std(d̂s) 0.0457 0.0581 0.0496 0.0486

512 Mean(d̂) 0.1975 0.1786 0.1997 0.2056
Std(d̂) 0.0350 0.0414 0.0379 0.0370
Mean(d̂s) 0.1952 0.1828 0.2003 0.2027
Std(d̂s) 0.0341 0.0388 0.0367 0.0393

Unknown mean
256 Mean(d̂) 0.1789 0.1588 0.1725 0.1755

Std(d̂) 0.0519 0.0587 0.0549 0.0556
Mean(d̂s) 0.1851 0.1659 0.1913 0.1910
Std(d̂s) 0.0480 0.0591 0.0493 0.0499

512 Mean(d̂) 0.1889 0.1810 0.1860 0.1877
Std(d̂) 0.0356 0.0389 0.0375 0.0383
Mean(d̂s) 0.1928 0.1812 0.1923 0.1912
Std(d̂s) 0.0324 0.0397 0.0315 0.0317

TABLE IV

Estimates of d and ds for d ¼ 0.2, ds ¼ 0.2 and s ¼ 10

n Stat.

Estimators

Exact Whittle Kalman (60) Kalman (120)

Known mean
256 Mean(d̂) 0.1955 0.1579 0.2019 0.1997

Std(d̂) 0.0484 0.0594 0.0527 0.0509
Mean(d̂s) 0.1937 0.1666 0.2013 0.2014
Std(d̂s) 0.0460 0.0588 0.0500 0.0502

512 Mean(d̂) 0.1979 0.1775 0.1999 0.1978
Std(d̂) 0.0319 0.0411 0.0368 0.0359
Mean(d̂s) 0.1955 0.1834 0.2007 0.2000
Std(d̂s) 0.0324 0.0383 0.0358 0.0357

Unknown mean
256 Mean(d̂) 0.1798 0.1581 0.1702 0.1733

Std(d̂) 0.0503 0.0572 0.0481 0.0476
Mean(d̂s) 0.1867 0.1679 0.1947 0.1948
Std(d̂s) 0.0456 0.0560 0.0528 0.0525

512 Mean(d̂) 0.1896 0.1789 0.1933 0.1947
Std(d̂) 0.0363 0.0394 0.0308 0.0314
Mean(d̂s) 0.1924 0.1852 0.1957 0.1948
Std(d̂s) 0.0325 0.0378 0.0365 0.0371
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xt ¼
X1
j¼0

wjet�j; ð7Þ

where wj are the coefficients of

TABLE V

Estimates of d and ds for d ¼ 0.1, ds ¼ 0.3 and s ¼ 6

n Stat.

Estimators

Exact Whittle Kalman (60) Kalman (120)

Known mean
256 Mean(d̂) 0.0976 0.0625 0.1003 0.1061

Std(d̂) 0.0466 0.0497 0.0516 0.0479
Mean(d̂s) 0.2921 0.2815 0.3106 0.3064
Std(d̂s) 0.0424 0.0607 0.0500 0.0472

512 Mean(d̂) 0.0975 0.0755 0.1007 0.0969
Std(d̂) 0.0331 0.0403 0.0383 0.0373
Mean(d̂s) 0.2983 0.2965 0.3111 0.3088
Std(d̂s) 0.0317 0.0400 0.0365 0.0360

Unknown mean
256 Mean(d̂) 0.0823 0.0603 0.0771 0.0808

Std(d̂) 0.0470 0.0500 0.0399 0.0408
Mean(d̂s) 0.2833 0.2804 0.2993 0.2972
Std(d̂s) 0.0426 0.0609 0.0483 0.0489

512 Mean(d̂) 0.0924 0.0776 0.0774 0.0804
Std(d̂) 0.0354 0.0379 0.0338 0.0336
Mean(d̂s) 0.2897 0.2970 0.3046 0.3033
Std(d̂s) 0.0323 0.0399 0.0384 0.0367

TABLE VI

Estimates of d and ds for d ¼ 0.1, ds ¼ 0.3 and s ¼ 10

n Stat.

Estimators

Exact Whittle Kalman (60) Kalman (120)

Known mean
256 Mean(d̂) 0.0969 0.0617 0.0997 0.0987

Std(d̂) 0.0456 0.0495 0.0512 0.0485
Mean(d̂s) 0.2934 0.2903 0.3171 0.3155
Std(d̂s) 0.0408 0.0608 0.0504 0.0491

512 Mean(d̂) 0.0969 0.0748 0.0974 0.0967
Std(d̂) 0.0325 0.0399 0.0374 0.0364
Mean(d̂s) 0.2951 0.3013 0.3149 0.3114
Std(d̂s) 0.0289 0.0398 0.0359 0.0355

Unknown mean
256 Mean(d̂) 0.0803 0.0604 0.0669 0.0710

Std(d̂) 0.0475 0.0496 0.0436 0.0421
Mean(d̂s) 0.2873 0.2927 0.3153 0.3107
Std(d̂s) 0.0395 0.0580 0.0441 0.0438

512 Mean(d̂) 0.0886 0.0765 0.0796 0.0819
Std(d̂) 0.0354 0.0378 0.0414 0.0412
Mean(d̂s) 0.2896 0.2991 0.3036 0.2997
Std(d̂s) 0.0322 0.0414 0.0418 0.0383
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wðzÞ ¼
X1
j¼0

wjz
j ¼ ð1� zÞ�dð1� zsÞ�ds

to the approximate MA(m) given by

xt ¼
Xm
j¼0

wjet�j; ð8Þ

Extending the canonical state–space representation of the MA(m) model (8)
given by Chan and Palma (1998) in the context of ARFIMA processes we have:

Wtþ1 ¼
0 Im�1

0 � � � 0

� �
Wt þ

w1

..

.

wm

2
64

3
75et; ð9Þ

xt ¼ 1 0 0 � � � 0½ �Wt þ et; ð10Þ

with

F ¼ 0 Im�1

0 � � � 0

� �
; G ¼ 1 0 0 � � � 0½ �; ð11Þ

Wt ¼ xðtjt � 1Þ; xðt þ 1jt � 1Þ; . . . ; xðt þ m� 1jt � 1Þ½ �0; ð12Þ

xðt þ jjt � 1Þ ¼ E½xtþjjxt�1; xt�2; . . .�: ð13Þ

The Kalman approach estimates are obtained by maximizing the Gaussian log-
likelihood function (14). The log-likelihood function can be evaluated by directly
applying the Kalman recursive equations in Proposition 12.2.2 of Brockwell and
Davis (1991) to the state–space system (9) to (11). The log-likelihood function
(excepting a constant) is given by

LðhÞ ¼ � 1

2

Xn
t¼1

logDt þ
Xn
t¼1

ðxt � x̂tÞ2

Dt

( )
; ð14Þ

where x̂t is the one-step predictor of xt and Dt its variance given by eqn (12.2.6) of
Brockwell and Davis (1991).

The Monte Carlo experiments were conducted with a Pentium IV 2.8GHz. HT
machine using a Fortran program in a Windows XP platform. Table VII shows
the CPU average times (in seconds) for one evaluation of the respective method.
The average times are computed over 2000 calls from the optimization routine.
For both sample sizes studied, the fastest method is the Whittle. The Kalman filter
approach with m ¼ 60 is faster than the exact MLE method for n ¼ 512 while the
Kalman method with m ¼ 120 is the slowest algorithm for both sample sizes.
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From Tables I–VI, it seems that for the known mean case the exact MLE and
the Kalman methods display little bias for both sample sizes. On the contrary, the
Whittle method presents a noticeable downward bias for both estimators d̂ and d̂s.
The sample standard deviations of the estimates are close to their theoretical
counterparts (see Table VIII), for the four methods considered. However, the
exact MLE seems to have slightly lower sample standard deviations than the other
methods, for both long-memory parameters and both sample sizes.

In the unknown mean case, all the estimates seems to display a downward bias,
which is stronger for the Whittle method. Nevertheless, the bias displayed by this
estimate is similar to the known mean case, since the Whittle method is not affected
by the estimation of the mean. Similar to the previous case, the estimated
standard deviations are comparable to the theoretical values and the exact MLE
displays slightly lower sample standard deviations than the other methods for
most long-memory parameters and sample size combinations.

The theoretical values of the standard deviations of the estimated parameters
given in Table VIII are based on formula (6). In general, analytic expressions for
the integral in eqn (6) are difficult to obtain for an arbitrary period s. For a
SARFIMA(0, d, 0) � (0, ds, 0)s model, the matrix C(h) can be written as

CðhÞ ¼
p2
6 C12

C12
p2
6

0
@

1
A; ð15Þ

with

C12 ¼
1

p

Z p

�p
log 2 sin

x
2

� ���� ���n o
log 2 sin s

x
2

� ���� ���n o
dx:

An interesting feature of the asymptotic variance of the parameters is that for a
SARFIMA(0, d, 0) � (0, ds, 0)s process, the variance of d̂ is the same as the
variance of d̂s. An explicit expression for this integral can be given for s ¼ 2. In
this case,

TABLE VIII

Asymptotic Standard Deviation of d̂ and d̂s

n s ¼ 6 s ¼ 10

256 0.050330 0.050332
512 0.035588 0.035590

TABLE VII

CPU Average Times (in Seconds) for Computing d̂ and d̂s with d ¼ 0.3, ds ¼ 0.1 and s ¼ 6

Sample size Exact Whittle Kalman (60) Kalman (120)

256 0.00302 0.00012 0.00439 0.02786
512 0.00693 0.00023 0.00441 0.03022
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CðhÞ ¼ p2

12

2 1
1 2

� �
:

For other values of s, the integral may be evaluated numerically. Figure 1 shows
the evolution of r2ðd̂Þ as a function of the period s, see panel (a), and the evolution
of covðd̂; d̂sÞ as s increases, see panel (b). Both curves are based on the numerical
evaluation of eqn (15) and then inverting this matrix to obtain the asymptotic
variance–covariance matrix of the parameters.

Observe that r2ðd̂sÞ [equivalently r2ðd̂Þ] starts with a value of 8/p2 and
decreases to 6/p2 as s ! 1. That is, for a very large period s, the asymptotic
variance of d̂s is the same as the variance of d̂ from an ARFIMA(0, d, 0)
model.

In order to illustrate the normality of the estimates, Figure 2 shows quantile
plots for the estimated parameters d̂, see panel (a), and d̂s, see panel (b). These
estimates are based on 1000 repetitions of a SARFIMA (0, d, 0) � (0, ds, 0)s
process with s ¼ 6, d ¼ 0.2, ds ¼ 0.2 and sample size of 600 observations. The
chi-square test for normality for these samples are d̂: v231 ¼ 26:11 with p-value
equaling 0.72 and d̂s: v231 ¼ 30:85 with p-value equaling 0.47. Thus, the hypothesis
of normality of both samples is not rejected at the 5% significance level.

Finally, Figure 3 shows a simulated SARFIMA (2, d, 1) � (1, ds, 0)s process
with s ¼ 48, sample size n ¼ 1440, d ¼ 0.1, ds ¼ 0.2, /1 ¼ 0.6, /2 ¼ 0.2, U1 ¼
0.6, and r� ¼ 1. Panel (a) displays the series, panel (b) shows the ACF and the
spectral density is shown in panel (c). Observe that the time series shows a
seasonal pattern, which is reflected in the ACF, with periodicity s ¼ 48. The
estimated spectral density shows peaks at the origin, at periodicity 24 and 48.

0 10 20 30

0.
65

0.
70

0.
75

0.
80

(a)

0 10 20 30

–0
.4

–0
.3

–0
.2

–0
.1

(b)

Figure 1. (a) Values of r2ðd̂sÞ as a function of the period s; (b) values of covðd̂; d̂sÞ as a function of s.
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Figure 3. Simulated SARFIMA(2, d, 1) � (1, ds, 0)s process: (a) series, (b) ACF and (c) spectral
density.
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Figure 2. Quantile plots of (a) d̂ (d ¼ 0.2) and (b) d̂s (ds ¼ 0.2).
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4. AN INTERNET TRAFFIC EXAMPLE

As an illustration of the MLE discussed in the previous sections, consider the http
requests to a World Wide Web server at the University of Saskatchewan between
1 June 1995 to 31 December 1995. Since it has been documented that internet
traffic data display certain amount of long-memory behaviour (see, e.g. Beran,
1994), this data set serves as a good example to illustrate the long-memory
seasonal modelling methodology developed in this paper and to test the
effectiveness of the proposed scheme. The original data set consists of time
stamps of 1-second resolution. In this paper, the data have been aggregated
every 30 minutes, i.e. each point represents the total number of requests sent
to the Sakastchewan’s server within a 30-minute interval. To make the
data more Gaussian and to stabilize their variances, we apply a logarithmic
transformation.

Figure 4(a) displays a time series of the transformed series. The trace consists
of 9074 measurements aggregated in every 30 minutes. Thus, the time span of
the observations is about 189 days. Panel (b) shows the autocorrelation function
of the data. Note that the ACF decays very slowly and exhibits a sinusoidal
behaviour. The amplitude of the harmonic component also decays as the lag
increases. Figure 5(a) shows a log-var graph. It indicates a possible long-
memory behaviour in the data as described in Beran (1994). The spectral density
of the data is displayed in panel (b). Observe that there are two major peaks in
the spectrum: one at the origin and another at frequency x ¼ 2p � 189/9074 ¼
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Figure 4. (a) Log internet traffic data; (b) autocorrelation function.
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0.13 (similar to Figure 3, the third peak is an artifact of the periodogram
corresponding to 2x). These features are compatible with a seasonal long-
memory process with s ¼ 48, i.e. a daily seasonal pattern. Accordingly, a
SARFIMA model is suggested for this time series. The model selected by
Akaikes� criterion is the SARFIMA (1, d, 1) � (0, ds, 0)s with estimated
parameters given in Table IX. Observe that the estimated values of d and ds
are small, indicating that the long-memory effect of this data set seems to be
mild, albeit significant. The Student’s t-values reported in Table IX are based on
the numerical calculation of the inverse of the Hessian matrix, which
approximates the asymptotic variance of the parameters.

The variance of the series is 0.635 and the residual variance of the model is
0.207. Thus, the model explains roughly two-thirds of the total variance of the
data. The residuals and their autocorrelation function are displayed in Figure 6(a)
and (b), respectively. Observe that the strong correlation structure of the data has
been largely removed, suggesting the proposed model provides a reasonably good
fit to the data.

TABLE IX

Log Internet Traffic Data: maximum Likelihood Estimation of the

SARFIMA(1, d, 1) � (0, ds, 0)s model

Parameter d ds / h

Estimate 0.076 0.148 0.917 0.583
Student’s t-value 7.76 19.79 172.71 50.03
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Figure 5. Log Internet traffic data: (a) var-log graph; (b) spectral density.
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5. CONCLUDING REMARKS

Asymptotic properties of the MLEs of seasonal long-memory processes are
derived in this paper. It is found that the MLEs are consistent, efficient and satisfy
a central limit theorem. Finite sample performances of these estimates are
investigated through Monte Carlo experiments and it is shown that finite sample
performances of the MLE behave reasonably well even for moderate sample sizes.
The exact MLE compares favourably with other estimation methods. Finally, the
proposed methodology is illustrated with a disc traffic example to demonstrate its
usefulness in modelling computer traffic.

APPENDIX

Lemma 1. Let f(x) be given in eqn (1). Let g(x) 	 0 be such that g(x) � Mg. Then, there
exists a constant K > 0, not depending on g or f, and 0 < p < 1 such that for g 2 ½12 ; 1�;

Z p

�p
jfgðxÞ � f ðxÞjgðxÞdx � KMgjg� 1jp:
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Figure 6. (a) Residuals of the SARFIMA model; (b) autocorrelation function of the residuals.
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Proof. Consider the following decomposition

Z p

�p
jfgðxÞ � f ðxÞjgðxÞdx

¼
Z p

�p
f ðxÞhgðxÞgðxÞdx

¼
X
ij

Z
Aij

f ðxÞhgðxÞgðxÞdxþ
Z
�A
f ðxÞhgðxÞgðxÞdx; ðA1Þ

where

hgðxÞ ¼
fgðxÞ
f ðxÞ � 1

����
����; Aij ¼ fx : jx� xijj � ð1� gÞ

1
mg

are neighbourhoods around each distinct pole xij for i ¼ 1, . . . , r, j ¼ 1, . . . ,mi, m ¼
maxifmig, and A ¼ ð�p; p�n

S
Aij: Observe that for g sufficiently close to 1, the sets Aij are

disjoint.

To prove the lemma, it suffices to show that each term in (A1) satisfies the following
inequalities: Z

Aij

f ðxÞhgðxÞgðxÞdx � KMgjg� 1jp; ðA2Þ

for i ¼ 1, . . . , r, j ¼ 1, . . . ,mi, andZ
�A
f ðxÞhgðxÞgðxÞdx � KMgjg� 1jp; ðA3Þ

where K is a positive constant not depending on g or f, and p is a number between 0 and 1.
To establish (A2), we first show that hg(x) is uniformly bounded for g 2 ½12 ; 1� and

x 2 (–p, p]. Observe that

hgðxÞ ¼
Yr
i¼1

piðdiÞ � 1

�����
�����;

where

di ¼
Ymi

j¼1

jx� xijj and piðxÞ ¼ f x

ð1� gÞ2 þ gx
gai ; for i ¼ 1; . . . ; r:

Since di 	 0, we focus on the properties of the function pi (x) for x 2 [0, 1). A simple
calculation gives

p0iðxÞ ¼
aið1� gÞ2xai�1

½ð1� gÞ2 þ gx�aiþ1
;

which is non-negative for x 	 0. Furthermore,

lim
x!1

piðxÞ ¼ g�ai

and thus

0 � piðxÞ � g�ai ; for all x 	 0:
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Hence,

0 �
Yr
i¼1

piðdiÞ � g�
Pr

i¼1
ai � 2

Pr

i¼1
ai � 2r; since g 	 1

2
and 0 � ai < 1 for i ¼ 1; . . . ; r:

Note that

sup
0�x�2r

jx� 1j ¼ max sup
0�x�1

jx� 1j; sup
1�x�2r

jx� 1j
	 


¼ maxf1; 2r � 1g � K0:

Consequently, 0 � hg(x) � K0, for any g 2 ½12 ; 1� and x 2 (–p, p]. With this bound, we
obtain Z

Aij

f ðxÞhgðxÞgðxÞdx � K0

Z
Aij

f ðxÞgðxÞdx: ðA4Þ

However, over Aij,

x�a
Y

i0 6¼i;j0 6¼j

jx� xi0j0 j�a0i � Kij < 1;

where Kij does not depend on (a, a1, . . . , ar), since the only pole that the set Aij contains is
xij and (a, a1, . . . , ar) belong to the compact set H. Thus,Z

Aij

f ðxÞgðxÞdx � Kij

Z
Aij

jx� xijj�ai gðxÞdx: ðA5Þ

Since g(x) � Mg, we haveZ
Aij

jx� xijj�ai gðxÞdx � 2Mgð1� gÞ
1�ai
m : ðA6Þ

Combining (A4), (A5) and (A6), we haveZ
Aij

f ðxÞhgðxÞgðxÞdx � KMgð1� gÞ
1�ai
m ;

where K ¼ 2K0 maxijfKijg. Note that this constant is finite and does not depend on f.

Moreover, since 0 � 1 – g < 1,

ð1� gÞ
1�ai
m � ð1� gÞp; for i ¼ 1; . . . ; r; where 0 < p ¼ ð1�max aiÞ

m
< 1:

Thus, we obtain inequality (A2).

To prove eqn (A3), we first establish an upper bound for hg(x) for x 2 �A. Observe that
over

�A; jx� xijj > ð1� gÞ
1
m; for i ¼ 1; . . . ; r; j ¼ 1; . . . ;mi:

Thus,

di ¼
Ymi

j¼1

jx� xijj 	 ð1� gÞ
mi
m 	 1� g:

But, as shown previously, pi(x) is a nondecreasing function. Consequently,

pi(di) 	 pi(1 – g) ¼ 1. However,
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piðxÞ � lim
x!1

piðxÞ ¼ g�ai :

Thus,

1 �
Yr
i¼1

piðdiÞ � g�
P

ai :

Hence

hgðxÞ ¼
Yr
i¼1

piðdiÞ � 1

�����
����� ¼

Yr
i¼1

piðdiÞ � 1

and therefore

0 � hgðxÞ � g�
P

ai � 1; for x 2 �A:

With this upper bound, we obtainZ
�A
f ðxÞhgðxÞgðxÞdx � ðg�

P
ai � 1Þ

Z
�A
f ðxÞgðxÞdx

� ðg�
P

ai � 1ÞMg

Z p

�p
f ðxÞdx

¼ qðgÞð1� gÞpMg

Z p

�p
f ðxÞdx;

where

qðgÞ ¼ ðg�
P

ai � 1Þ
ð1� gÞp and 0 < p ¼ ð1�max aiÞ

m
<1:

Since q(g) is a continuous function on ½12 ; 1Þ, an application of L’Hospital’s rule yields

lim
g!1

qðgÞ ¼ 0 if 0 < p < 1 and lim
g!1

qðgÞ ¼
X

ai if p ¼ 1:

Consequently, q(g) is a bounded function for g 2 ½12 ; 1� and there exists a constant

K1 > 0 such that q(g) � K1 for g 2 ½12 ; 1�. Hence,Z
�A
f ðxÞhgðxÞgðxÞdx � K1Mgð1� gÞp

Z p

�p
f ðxÞdx:

Now, since H is compact and
R p
�p fhðxÞdx is a continuous function of h 2 H, there

exists a positive constant K2 not depending on fh such that
R p
�p fhðxÞdx � K2. Hence, the

lemma follows with K ¼ K1K2. h

Lemma 2 shows the uniform convergence of the approximated variance-covariance
matrix to T as g tends to 1.

Lemma 2.

(a) jTj � Kn, where the constant K does not depend on h.
(b) Let p be given as in Lemma 1 and choose d > 0 such that d > 1

p. Define g ¼ g(n) ¼1 –
n–d. Then jjTg – Tjj � Kn1 – dp and consequently jjTg – Tjj ! 0 uniformly in h as
n ! 1.
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Proof. For part (a), observe that

jT ðfhÞj2 ¼ n
Xn�1

k¼0

1� k
n

� �
c2hðkÞ � n

Xn
k¼0

c2hðkÞ:

An application of Lemma 1 of Oppenheim et al. (2000) to the spectral density defined

by (1) establishes that chðkÞ � KðhÞk~a�1, where ~a ¼ maxfa; a1; . . . ; arg: Since H is compact,
there exists a constant K not depending on h such that chðkÞ � Kk~a�1. Therefore,

Xn
k¼0

c2hðkÞ � K
Xn
k¼0

k2~a�2:

. Hence, for

~a <
1

2
;
X1
k¼0

c2hðkÞ < 1;

for

~a ¼ 1

2
;
Xn
k¼0

c2hðkÞ � K logðnÞ

and for

~a >
1

2
;
Xn
k¼0

c2hðkÞ < Kn:

Thus, we conclude that

Xn
k¼0

c2hðkÞ < Kn; for any 0 � ~a < 1

and the result follows.
For part (b), let h(x) ¼ f(x) – fg(x). Thus

kTg � Tk ¼ kT ðhÞk and kTg � Tk � kT ðhþÞk þ kT ðh�Þk:

Since T(hþ) and T(h–) are semi-definite positive, we have kT ðhþÞk � kT ðhþÞ
1
2k2 ¼

supkXk¼1 X
0T ðhþÞX. But, for all X 2 Rn such that X

0
X ¼ 1 we have

X0T ðhþÞX ¼
Z p

�p
hþðxÞ

Xn
j¼1

eixjXj

�����
�����
2

dx

�
Z p

�p
jfg;hðxÞ � fhðxÞj

Xn
j¼1

eixjXj

�����
�����
2

dx:

Now, by the Cauchy–Schwarz inequality we have

gðxÞ ¼
Xn
j¼1

eixjXj

�����
�����
2

� n � Mg

and then
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sup
kXk¼1

X0T ðhþÞX � Kjg� 1jpn;

by virtue of Lemma 1. Similarly,

sup
kXk¼1

X0T ðh�ÞX � Kjg� 1jpn:

Therefore, jjTg – Tjj � Kn1 – dp. Since, 1 – dp < 0, jjTg – Tjj ! 0 uniformly in h as

n ! 1. h

Lemma 3. Let 0 < a, b < 1, m ¼ 2dr þ 1, g ¼ g(n) ¼ 1 – n–d for some d such that
1 < dp where p is given in Lemma 2,

fgðxÞ ¼ H1ðxÞjxj�a
Yr
i¼1

ð1� gÞ2 þ g
Ymi

j¼1

jx� xijj
" #�ai

;

ggðxÞ ¼ H2ðxÞjxj�b
Yr
i¼1

ð1� gÞ2 þ g
Ymi

j¼1

jx� xijj
" #�ai

;

where H1(x), H2(x) and xij, i ¼ 1, . . . , r, j ¼ 1, . . . ,mi satisfy conditions (1). Then,

jjT ðfgÞ�1=2T ðggÞ1=2jj ¼ Oðnmaxfm2ðb�aÞ;0gÞ:

Proof. Let

nðxÞ ¼
Yr
i¼1

½ð1� gÞ2 þ g
Ymi

j¼1

jx� xijj��ai :

Then,

jjT ðfgÞ�1=2T ðggÞ1=2jj2 � K sup
kXk¼1

R p
�p jxj

�bnðxÞj
Pn

j¼1 e
ixjXjj2dxR p

�p jxj
�anðxÞj

Pn
j¼1 e

ixjXjj2dx
:

Consider the following function

hðxÞ ¼
nðxÞj

Pn
j¼1 e

ixjXjj2R p
�p nðxÞj

Pn
j¼1 e

ixjXjj2dx
:

Observe that h is non-negative andZ p

�p
hðxÞdx ¼ 1:

Furthermore, given that
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ð1� gÞ2 þ g
Ymi

j¼1

jx� xijj 	 ð1� gÞ2

and ai > 0 for i ¼ 1, . . . , r we have,

½ð1� gÞ2 þ g
Ymi

j¼1

jx� xijj��ai � ð1� gÞ�2ai :

Hence, nðxÞ � ð1� gÞ�2
Pr

i¼1
ai . Since 1 – g ¼ n–d we obtain

nðxÞ � n2d
Pr

i¼1
ai :

As 0 � ai < 1 for i ¼ 1, . . . , r, we establish the upper bound n(x) � n2dr. In addition,

Xn
j¼1

eixjXj

�����
�����
2

� n

for all jjXjj ¼ 1. Thus, the numerator of h is bounded by Kn2drþ1. On the contrary,
by a similar argument as above it can be shown that n(x) 	 C–r for some constant
C 	 1. Thus, a lower bound for the denominator is C–r. Consequently, h(x) � Crn2drþ1.

Thus,

jjT ðfgÞ�1=2T ðggÞ1=2jj2 � K sup
h2P

R p
�p jxj

�bhðxÞdxR p
�p jxj

�ahðxÞdx
;

where

P ¼ fh : h is a probability density on ½�p; p� with hðxÞ � nm;m ¼ 2dr þ 1g:

Note that the supremum of the above inequality is attained at the function h
 2 P,
where h
(x) ¼ nm when jxj � 1

2nm and zero otherwise. At such an h
,

jjT ðfgÞ�1=2T ðggÞ1=2jj � Knmaxfm2ðb�aÞ;0g:

This completes the proof. h

Lemma 4. Let fj and gj, j ¼ 1, . . . , q, be spectral densities satisfying (1) with parameters
(a, a1, . . . , ar) and (b, b1, . . . , br), respectively. Assume that b – 2a � 0 and bi – 2ai � 0, for

i ¼ 1, . . . , r. Consider the spectral densities f g
j and ggj satisfying the corresponding

approximations (5). Then

1

n
tr
Yq
j¼1

T ðf4p2fjg�1ÞT ðgjÞ
" #

� 1

n
tr
Yq
j¼1

T ðf4p2f g
j g

�1ÞT ðggj Þ
" #�����

����� � Kn1�dp;

for all g 	 1 – n–d, where K is a positive constant and d and p 2 (0,1] are as in Lemma 2.

Proof. We prove the lemma for q ¼ 1 since the other cases can be shown similarly.
Let f ¼ f1 and g ¼ g1 and
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DnðxÞ ¼
Xn
j¼1

eixj:

Note that

tr T ðf�1ÞT ðgÞ
� �

¼
Z p

�p

Z p

�p
jDnðx� kÞj2f�1ðxÞgðkÞdx dk:

Consequently,

jtr½T ðf4p2f g�1ÞT ðgÞ� � tr½T ðf4p2f gg�1ÞT ðggÞ�j

� K
Z p

�p

Z p

�p
jDnðx� kÞj2jf ðxÞ�1gðkÞ � ff gðxÞg�1ggðkÞjdx dk

� K
Z p

�p

Z p

�p
jDnðx� kÞj2f ðxÞ�1jgðkÞ � ggðkÞjdx dk

þ K
Z p

�p

Z p

�p
jDnðx� kÞj2f ðxÞ�1f gðxÞ�1ggðkÞjf ðxÞ � f gðxÞjdx dk:

But, f(x)–1 � K and fg(x)–1 � K, hence

jtr½T ðf4p2f g�1ÞT ðgÞ� � tr½T ðf4p2f gg�1ÞT ðggÞ�j

� K
Z p

�p

Z p

�p
jDnðx� kÞj2jgðkÞ � ggðkÞjdx dk

þ K
Z p

�p

Z p

�p
jDnðx� kÞj2ggðkÞjf ðxÞ � f gðxÞjdx d k:

Observe that jDn(x – k)j � n for all x and k. Therefore, by virtue of Lemma 1 we have

Z p

�p

Z p

�p
jDnðx� kÞj2jgðkÞ � ggðkÞjdx dk � Kn2j1� gjp;

and Z p

�p

Z p

�p
jDnðx� kÞj2ggðkÞjf ðxÞ � f gðxÞjdx dk � Kn2j1� gjp

Z p

�p
ggðkÞdk:

Observe that gg is integrable for all g 2 [0, 1]. Hence,

Z p

�p

Z p

�p
jDnðx� kÞj2ggðkÞjf ðxÞ � f gðxÞjdx dk � Kn2j1� gjp:

Therefore,

n�1jtr½T ðf4p2f g�1ÞT ðgÞ� � tr½T ðf4p2f gg�1ÞT ðggÞ�j � nj1� gjp

and the result is obtained for all g 	 1 – n–d. h

Lemma 5. Let fj and gj, j ¼ 1, . . . , q, be spectral densities satisfying eqn (1) with
parameters (a, a1, . . . , ar) and (b, b1, . . . , br), respectively (same parameters for all j). Assume

that qðb� aÞ < 1
2 and qðbi � aiÞ < 1

2, for i ¼ 1, . . . , r. Then
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lim
n!1

1

n
tr
Yq
j¼1

T ðfjÞ�1T ðgjÞ
" #

¼ 1

2p

Z p

�p

Yq
j¼1

gjðxÞ
fjðxÞ

( )
dx: ðA7Þ

Proof. Proceeding analogously to the proof of Theorem 5.1 of Dahlhaus (1989), it
suffices to prove that

lim
n!1

1

n
tr
Yk
j¼1

T ðf4p2fjg�1ÞT ðgjÞ
" #

¼ 1

2p

Z p

�p

Yk
j¼1

gjðxÞ
fjðxÞ

( )
dx; ðA8Þ

for any integer k such that 1 � k � 2q. Observe that this limit is well defined if 2q(b –
a) < 1 and 2q(bi – ai) < 1, for i ¼ 1, . . . , r. In order to establish eqn (A8), define the

following quantities:

an ¼
1

n
tr
Yk
j¼1

T ðf4p2fjg�1ÞT ðgjÞ
" #

; a ¼ 1

2p

Z p

�p

Yk
j¼1

gjðxÞ
fjðxÞ

( )
dx;

agn ¼
1

n
tr
Yk
j¼1

T ðf4p2f g
j g

�1ÞT ðggj Þ
" #

; ag ¼ 1

2p

Z p

�p

Yk
j¼1

ggj ðxÞ
f g
j ðxÞ

( )
dx:

Then,

jan � aj � jan � agnj þ jagn � agj þ jag � aj:

Now, for all g 	 1 – n–d, with d as in Lemma 2, we obtain from Lemma 4 that,
jan � agnj � Kn1�dp and by Lemma 5.3.2 of Taniguchi and Kakizawa (2000),
lim supn!1 jagn � agj ¼ 0: Furthermore, using arguments similar to proving Lemma 1,
we conclude that given � > 0, jag – aj < � for g in a neighbourhood of 1. Consequently,

lim supn ! 1|an – a| � �. Since � can be chosen arbitrarily small, the result holds as g ! 1.h

Lemma 6. Consider the following three matrices:

Að1Þ
h ¼ T ðfhÞ�1T ðrfhÞT ðfhÞ�1T ðrfhÞT ðfhÞ�1;

Að2Þ
h ¼ T ðfhÞ�1T ðr2fhÞT ðfhÞ�1; Að3Þ

h ¼ T ðfhÞ�1T ðrfhÞT ðfhÞ�1:

Then, for some � > 0, i ¼ 1, 2, 3 and for all X 2 Rk,

ðaÞ j kAðiÞ
h k j � Kn�; ðbÞ j krAðiÞ

h k j � Kn�;

ðcÞ jX0AðiÞ
h Xj � KX0Xn�; ðdÞ j10AðiÞ

h 1j � Kn1�aðhþ�Þ;

where 1 ¼ (1, . . . , 1)0.
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Proof. We only prove part (a) for the case i ¼ 1, the other cases are derived similarly.
Note that,

jjjAðiÞ
h jjj2 ¼

Xq
j¼1

jjjAðiÞ
hj
jj2;

and

jjAð1Þ
hj
jj2 ¼ jjT�1T@j T

�1T@j T
�1 k2;

where T ¼ T(f) and Toj
¼ T(of/ohj). Consequently,

jjAð1Þ
hj
jj � jjT�1jj jjT�1T@j jj

2:

Since f is bounded from below

ðf ðxÞ > C > 0Þ; jjT�1jj � K so that jjAð1Þ
hj
jj � KjjT�1T@j jj

2:

Let g(x) ¼ of/ohj. Then,

kT ðf Þ�1T ðgÞk � kT ðf Þ�1T ðgÞ � T ðf Þ�1T ðggÞk þ kT ðfgÞ�1T ðggÞk
þ kT ðf Þ�1k kT ðfgÞ�1T ðggÞk kT ðf Þ � T ðfgÞk

� KkT ðgÞ � T ðggÞk þ kT ðfgÞ�1T ðggÞk
þ KkT ðfgÞ�1T ðggÞk kT ðf Þ � T ðfgÞk;

where g ¼ g(n) ¼ 1 – n–d, for some d such that dp > 1 with p as in Lemma 1. Now, by

Lemma 2(b), jjT(g) – T(gg)jj and jjT(f) – T(fg)jj are both bounded by Kn1 – dp. On the other
hand, by Lemma 3, jjT(fg)–1T(gg)jj is bounded by Knmd0, for some d0 > 0. Consequently,
jjT(f)–1T(g)jj � Knmd0, and therefore by taking � ¼ 2md0 the result is obtained. h

Lemma 7 is needed to show the equicontinuity of a class of quadratic forms. In turn, this
property is needed to prove the central limit theorem for the MLE.

Lemma 7. For i ¼ 1,2, let

ZðiÞ
n ¼ 1

n
X 0AðiÞ

h X � 1

n
trfAðiÞ

h T ðfhÞg:

Then, there exists a constant D such that for all h1, h2 2 Q, and for all j > 0,

PðjZðiÞ
n ðh1Þ � ZðiÞ

n ðh2Þj > jjh1 � h2jÞ � 4J2e�j=D:

Proof. It suffices to prove that there exists a constant C which is independent of h1,h2
and l such that

cuml
fZðiÞ

n ðh1Þ � ZðiÞ
n ðh2Þgjk

jh1 � h2j

 !�����
����� � l!Cl; ðA9Þ

where cuml(Z) denotes the l-cumulant of the random variable Z. Now, by Lemma 2(a),

jT ðfh0Þj � Kn: ðA10Þ
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Consequently, in order to derive (5.20), it suffices to prove that

jjðAðiÞ
h1

� AðiÞ
h2
Þjk jj � jh1 � h2jCðdÞnd: ðA11Þ

Note that by the mean value theorem and part (b) of Lemma 6, we have

jjðAðiÞ
h1

� AðiÞ
h2
Þjk jj � jh1 � h2jjjrAðiÞ

h jj � jh1 � h2jKnd:

Combining eqns (A11) and (A10) with the arguments in Lemma 6.2 of Dahlhaus (1989),
eqn (A9) is proved. h
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