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ABSTRACT

This paper addresses the issues of maximum likelihood estimation and
forecasting of a long-memory time series with missing values. A state-space
representation of the underlying long-memory process is proposed. By
incorporating this representation with the Kalman ®lter, the proposed
method allows not only for an e�cient estimation of an ARFIMA model
but also for the estimation of future values under the presence of missing
data. This procedure is illustrated through an analysis of a foreign
exchange data set. An investment scheme is developed which demonstrates
the usefulness of the proposed approach. # 1997 John Wiley & Sons, Ltd.
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Long-range dependent models have been playing an important role in diverse ®elds ranging from
economics to oceanography. A comprehensive review on this subject can be found in the recent
monograph by Beran (1994) and the references therein. Data with long-range behaviour is often
modelled by means of the so-called fractionally integrated autoregressive moving average
(ARFIMA) process. An ARFIMA �p; d; q� process fytg is de®ned by

F�B��1 ÿ B�dyt � Y�B�et �1�

where fetg is a sequence of uncorrelated random variables with zero means and constant variances
s2 (white noise), B is the backshift operator such that Byt � ytÿ1, F�B� � 1� f1B � � � � � fpB

p

is the autoregressive operator,Y�B� � 1 � y1B � � � � � yqB
q is the moving average operator, and

�1 ÿ B�d is the fractional di�erence operator. For d 2 �0; 1=2�, model (1) de®nes a long-memory
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process with non-summable autocorrelations, that is,
P1

k�0 j rk j � 1, where rk is the kth lag
autocorrelation function of fytg. For d < 0, model (1) is an antipersistent or an intermediate-
memory process, with zero spectral density at frequency zero and summable autocorrelations,P1

k�0 j rk j <1. If d is a positive integer, model (1) corresponds to an autoregressive integrated
moving average (ARIMA) model and if d � 0, model (1) is the usual ARMA process.

ARFIMA models are said to have long-memory because their autocorrelations decay to
zero at a hyperbolic rate, that is, rk � j k j ÿa, a > 0, for large k. On the other hand, ARMA
models are called short-memory processes since their autocorrelations converge to zero at an
exponential rate, i.e. rk � eÿa j k j, a > 0, for large k. Thus, the correlation between past and
present observations vanishes at a faster rate for ARMA models than for ARFIMA processes.
This unusual feature makes the estimation of parameters for an ARFIMA model more di�cult
but helps in the prediction of future values (see, for example, p. 11 of Beran, 1994). As a
consequence, ®tting ARFIMA models to real-life data has been a subtle and di�cult task for
practitioners.

This paper has three main objectives. First, it develops an e�cient state-space algorithm to
compute the maximum likelihood (ML) estimates for ARFIMA models via truncation. This
procedure facilitates the ®tting of ARFIMA models in practice. Second, it proposes a modi®ca-
tion to the Kalman ®lter equations which allows for missing values. When these techniques are
applied to analyse a foreign exchange data set which consists of missing values and exhibits long-
memory behaviour, it is found that both model estimation and model forecast can be achieved
reliably and e�ciently. The state space approach proposed in this paper not only provides means
to analyse long-range dependent time series but also helps to deal with missing values for long-
range dependent models. Third, using these techniques, an investment scheme is developed to
analyse the foreign exchange data set which demonstrates the e�ectiveness of the procedure.

This paper is organized as follows. In the next section the state-space models and the Kalman
®lter are introduced. The third section addresses the problem of missing data and presents a
solution by a modi®ed Kalman ®lter. Applications of the state-space systems and the Kalman
®lter to a foreign exchange data set are discussed in the fourth section. Conclusions are presented
in the ®nal section.

STATE-SPACE MODELS

Although a standard ARIMA model always has a ®nite-dimensional state-space representation,
an ARFIMA process can only be written in terms of an in®nite-dimensional state-space system
(see Chan and Palma, 1996). A moving average representation of the ARFIMA� p; d; q� process
(1) is given by:

yt �
X1
j�0

cjetÿ j t � 1; . . . ; n �2�

where cj are the coe�cients of c�z� � P1j�0 cjz
j � Y�z�=F�z��1 ÿ z�ÿd . (Formulae for

evaluating the cj are given in the Appendix.) From equation (2), an in®nite-dimensional state-
space representation may be written as (see p. 22 of Hannan and Deistler, 1988):

Xt�1 � FXt � Het t � 1; . . . ; n
yt � GXt � et t � 1; . . . ; n

�
�3�
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where Xt � � y�t j t ÿ 1� y�t � 1 j t ÿ 1� y�t � 2 j t ÿ 1� . . . �0, y�t j j � � E� yt j yj; yjÿ1; . . . �

F �
0 1 0 0 0 0 0 . . .
0 0 1 0 0 0 0 . . .
0 0 0 1 0 0 0 . . .
..
. ..

. ..
. ..

. ..
. . .

.

2664
3775 H �

c1

c2

c3

..

.

26664
37775 G � �1 0 0 0 . . . � �4�

Assuming the noise sequence fetg to be normally distributed, the log-likelihood function
(omitting a constant) of model (1) can be expressed as l�yyyyy� � ÿ�1=2n�log det Tn�yyyyy� ÿ �1=2n�
Y 0nT

ÿ1
n �yyyyy�Yn, where Tn�yyyyy� is the covariance matrix of the observations Yn � � y1; . . . ; yn�0 and yyyyy

is the vector of parameters, yyyyy � �f1; . . . ;fp; y1; . . . ; yq; d; s�0.
If expansion (2) is truncated after m components, we can write an approximate model as yt �Pm
j�0 cjetÿ j. An m-dimensional state-space representation of this truncated model is given by:

Xt�1 �

0 1 0 0 : : : 0

0 0 1 0 : : : 0

: : : : : : : :

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

26666664

37777775Xt �

c1

c2

..

.

cm

266664
377775et �5�

yt � � 1 0 0 : : : 0�Xt � et �6�

The likelihood function can be evaluated by means of the Kalman ®lter. The exact ML
estimates can be obtained by applying the Kalman ®lter to the state-space system (3) and (4). On
the other hand, approximateML estimates can be obtained by using the truncatedm-dimensional
state-space representation (5) and (6).

Given the state-space model (3), the one-step prediction of the state is given by X̂t � Ptÿ1Xt,
where Ptÿ1Xt represents the projection of Xt onto the closed linear space generated by
y1; . . . ; ytÿ1. The error covariance matrix of the one-step prediction is Ot � E�XtX

0
t ÿ X̂tX̂

0
t�.

The Kalman ®lter produces the one-step predictions recursively as follows. If the initial values are
taken to be X̂1 � E�X1� and O1 � E�X1X

0
1� ÿ E�X̂1X̂

0
1�, then the recursive equations are

Dt � GOtG
0 � R �7�

Yt � FOtG
0 � S �8�

Ot�1 � FOtF
0 � Q ÿ YtD

ÿ1
t Y0t �9�

X̂t�1 � FX̂t � YtD
ÿ1
t � yt ÿ GtX̂t� �10�

ŷt � GX̂t �11�

where R � Var�et� � s2, Q � Var�Het� � s2HH 0 and S � cov�et;Het� � s2H. As usual, the
initial state is estimated by X̂1 � E�X1� � 0, and the initial prediction error variance covariance
matrix is estimated by O1 � E�X1X

0
1� � �oij�yyyyy��i;j�1;2;...;, where oij�yyyyy� �

P1
k�0 ci�k�yyyyy�cj�k�yyyyy�.

(The coe�cients cj�yyyyy� are given in the Appendix.) In the optimization process, it is necessary to
choose an initial value for the parameter yyyyy. In our case, the initial parameter is taken to be
yyyyy0 � �ÿ0:5; 0:1; ÿ0:6�. Even though the algorithm is not highly sensitive to the initial value, yyyyy0
must correspond to a stationary and invertible ARFIMA model.
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Based on the Kalman recursive equations (7)±(11), the likelihood function can be written as

L�yyyyy� � �2p�ÿn=2
Yn
j�1

s2j

 !ÿ1=2
exp ÿ 1

2

Xn
j�1

� yj ÿ ŷj�2
s2j

( )
�12�

where ŷj is the one-step prediction of yj and s2j � Var� yj ÿ ŷj� � Dj, the one-step prediction
error variance.

The exact likelihood function can be calculated by applying the Kalman recursion (7)±(11)
directly to the in®nite-dimensional system. Even though the exact likelihood function can be
computed in a ®nite number of steps, such a computation may be cumbersome. Thus, for
moderate to large sample sizes, it may be prudent to use the truncated representation to obtain an
approximate ML estimate for yyyyy.

Speci®cally, according to the Kalman ®lter equations, the evaluation of the likelihood function
consists of n iterations (sample size) and each iteration consists of a number of matrix evalu-
ations. For the exact method, these matrices are of dimensions n� n, so there are n2 evaluations.
The resulting algorithm is then of order n3 �n� n� n�. On the other hand, the matrices involved
in the approximate approach are of dimensions m�m. Therefore, m2 evaluations are required
for each iteration. In this case, the algorithm is of order n�m2. Hence, for a ®xed truncation
parameter m, the calculation of the likelihood function is of order n for the approximate ML
method. The truncated state-space approach is n2=m times faster than the exact ML estimation.
For moderate to large samples, it may be desirable to consider truncating the Kalman recursive
equations after m components. With the truncation, the number of operations required for a
single evaluation of the log-likelihood function is reduced to an order of n. Asymptotic
behaviours of the estimates based on the approximate state-space are given in Chan and Palma
(1996). In the next section, we discuss a modi®cation to the Kalman ®lter method to handle the
incomplete data problem for a long-memory time series.

THE PROBLEM OF MISSING DATA

Incomplete data present a serious problem for time-series analysts. However, an appropriate
likelihood function for time series with missing data can be obtained by modifying the Kalman
®lter equations. Previous work along this line can be found in Jones (1980) who develops a
Kalman ®lter approach to deal with missing values in ARMA models. Harvey and Pierse (1984),
Ansley and Kohn (1985) and Kohn and Ansley (1986) extend Jones' results to ARIMA
processes. An alternate approach using the Expectation-Maximization (EM) algorithm can be
found in Shumway and Sto�er (1982). In this section, Kalman ®lter techniques are developed to
compute the ML estimates of an ARFIMA process with missing observations.

A modi®cation to the Kalman ®lter equations (8)±(11) to incorporate missing values can be
proceeded as follows. Consider the state-space system

Xt�1 � FXt � Vt

yt � GXt �Wt

�
where Xt is the state, yt is the observation, F and G are the system matrices, Var�Vt� � Q,
Var�Wt� � R, and Cov�Vt;Wt� � S. The likelihood function can be evaluated recursively by
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means of the modi®ed Kalman ®lter equations. Let Dt � Var� yt ÿ ŷt� � s2t and Ot �
Var�Xt ÿ X̂t�. The modi®ed Kalman equations are:

Dt � GOtG
T � R

Yt � FOtG
T � S

Ot�1 �
FOtF

T � Q ÿ YtD
ÿ1
t YT

t if observation t is known

FOtF
T � Q if observation t is missing

(

X̂t�1 �
FX̂t � YtD

ÿ1
t � yt ÿ GX̂t� if observation t is known

FX̂t if observation t is missing

8<:
Modi®cations of the state covariance matrix equation and the state prediction are obtained

by observing that if yt is missing, then Kt � Ktÿ1, where Kt denotes the closed linear space
generated by the observed values through time t, and X̂t�1 � E�Xt�1 jKt� � E�FXt � Vt jKt� �
FE�Xt jKt� � E�Vt jKt� � FE�Xt jKtÿ1� � FX̂t. SoXt�1 ÿ X̂t�1 � FXt � Vt ÿ FX̂t � F�Xtÿ
X̂t� � Vt. Thus, the covariance matrix of the state estimation error becomes

Ot�1 � Var�Xt�1 ÿ X̂t�1�
� Var�F�Xt ÿ X̂t� � Vt�
� Var�F�Xt ÿ X̂t�� � Var�Vt� � 2 Cov�F�Xt ÿ X̂t�;Vt�

Since Vt is uncorrelated with Xt ÿ X̂t,

Ot�1 � Var�F�Xt ÿ X̂t�� � Var�Vt� � FOtF
T � Q

The missing values can be estimated as follows. Let the observation yt be missing. By de®nition,
ŷt � E�yt jKtÿ1�, where Ktÿ1 � �sp�yk1 ; . . . ; yktÿ 1

� and the integers k1; . . . ; ktÿ1 denote the
locations of the observed values up to time t ÿ 1. From the state-space system equation:
yt � GXt �Wt, hence, ŷt � E�GXt �Wt jKtÿ1� � GX̂t � E�Wt jKtÿ1� � GX̂t. Thus, the
equation linking the estimation of the state and the observation is the same regardless of whether
yt is missing or not. The absence of yt, however, a�ects the forecast of future observations. The
variance of the prediction error is given by:

Var� yt ÿ ŷt� � Var�G�Xt ÿ X̂t�� � Var�Wt� � 2 Cov�G�Xt ÿ X̂t�;Wt�

Since G�Xt ÿ X̂t� and Wt are uncorrelated: Var� yt ÿ ŷt� � G Var�Xt ÿ X̂t�GT � R �
GOtG

T � R. Summing up, the Kalman ®lter recursive likelihood with missing observation is
given by

L�yyyyy� � �2p�ÿ�nÿr�=2
Y
t2Kn

s2t

0@ 1Aÿ1=2eÿ1=2�St2Kn
�� ytÿ ŷt�2=s2t �� �13�
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where r is the number of missing values. If there are no missing data, formula (13) corresponds to
the likelihood function (12). The recursive likelihood function for both complete and incomplete
time series is used in the next section to calculate ML estimates for the exchange rate data.

FOREIGN EXCHANGE DATA ANALYSIS

In order to illustrate the application and performance of the Kalman ®lter techniques described
in the previous section, we analyse a data set consisting of monthly observations of the exchange
rate of French francs per US dollar. The ®rst step in our analysis consists of a preliminary
examination of the data. Second, an ARFIMA model is ®tted to the foreign exchange series.
Third, a study of the e�ects of missing values on the estimation and forecasting of the ®tted
model is conducted.

Figure 1(a) displays a time-series plot, from January 1971 to August 1994 with a total of
n � 284 observations. The series presents a peak around February 1985. Due to increasing
variability and trends in the data, the ®rst di�erence of the log of the exchange rate is considered.
The resulting series is plotted in Figure 1(b). The di�erenced series seems to be stationary, even
though a small heterocedasticity is observed. The sample autocorrelation function (ACF) is
shown in Figure 2(a). Both the autocorrelations and the partial autocorrelation function (PACF)
decay slowly (see Figure 2(b)). The spectral density is depicted in Figure 2(c). The spectrum
contains high peaks for small to medium frequencies. This seems to indicate the presence of both
long- and short-memory component in the data.

The variance plot in Figure 3 is a useful tool to detect the presence of long-memory behaviour
in the data. As discussed in Beran (1994, pp. 92±4), for a long-range dependent time series xt, the
variance of its mean values �xk satis®es Var� �xk� � k2dÿ1. Therefore by plotting log�Var� �xk��
versus log�k� for di�erent values of k, a straight line with slope 2d ÿ 1 should be found. Since
d � 0 for a short-memory process, the slope would be ÿ1. Plots with slopes greater than ÿ1
would indicate the presence of long-memory behaviour. For the foreign exchange data, the
estimated slope is ÿ0:64 (estimated through least squares), suggesting a crude estimate of the
long-memory parameter d̂ � 0:18. For comparison, a straight line with slope ÿ1 is plotted in
Figure 3.

Figure 1. (a) Exchange rate (French francs to the US dollar); (b) ®rst di�erenced log data
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Figure 2. (a) Sample ACF of the di�erenced log data; (b) sample PACF of the di�erenced log data;
(c) spectral density

Figure 3. Variance plot. Heavy line: ®tted straight line with slope ÿ0:63; dotted line: ®tted straight line with
slope ÿ1
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Accordingly, a class of ARFIMA� p; d; q� models, with p and q less than or equal to 2 are
considered. This set of models includes the short-memory ARMA� p; q� process as a particular
case when d � 0. Parameter estimations are carried out by using the truncated state-space
approach, with m � 30 for the ARFIMA� p; d; q� case and m � maxf p; q � 1g for the
ARMA� p; q� process. The optimizations are carried out by using the subroutine DUMINF in
IMSL with numerical derivatives. The Hessian matrix and its inverse are computed by using the
subroutines DFDHES and DLINDS in IMLS, respectively.

It is worth noting that by using the truncated approach, the model ®tting process is speeded up
considerably. For example, with a sample size n � 284 and a truncation parameter m � 30, the
approximate ML algorithm is about 90 (2842/302) times faster than the exact ML method.

The model selection is based on the Akaike's Information Criterion (AIC) (see Hosking, 1984;
Crato and Ray, 1996). Table I gives the parameter estimates of the selected ARFIMA�1; d; 1�
model. The estimated standard deviation of the noise is ŝ � 0:0252. The covariance matrix of the
coe�cients is displayed in Table II.

Table I. Exchange-rate data: ARFIMA approximate ML
parameter estimation

Parameter MLE t-statistic

d 0.133 2.3
f1 ÿ0:490 ÿ2:8
y1 ÿ0:677 ÿ5:1

Table II. Exchange-rate data: Parameter covariance matrix

d f1 y1

d 0.0033 ÿ0:0045 ÿ0:0020
f1 0.0296 0.0212
y1 0.0176

Table III. Exchange-rate data: ARFIMA exact ML parameter estimation

Parameter MLE t-statistic

d 0.137 2.2
f1 ÿ0:498 ÿ2:7
y1 ÿ0:685 ÿ5:0

For comparison, the exact ML estimates of the selected ARFIMA�1; d; 1� model are also
calculated. The exact ML estimation is based on the state-space representation (3) and (4) and the
Kalman ®lter equations (7)±(11). Table III displays the exact ML estimates for d, f1 and y1 and
their t-statistics. Table IV shows the covariance matrix of the estimated parameters. From these
two tables, it can be seen that exact and approximate ML estimates are in close agreement,
indicating that the truncated approach provides reasonable ML estimates. This is not surprising
since a Monte Carlo study conducted in Chan and Palma (1996) suggests that approximate ML
performs very well under di�erent situations.
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Figure 4 shows a residual analysis of the ®tted model. Based on Figure 4(a)±(c), the residuals
seem to be white noise. The modi®ed portmanteau test (Ljung and Box, 1978; Li and McLeod,
1986)

QM � n�n � 2�
XM
k�1

r2k
n ÿ k

is distributed approximately as a w2�M ÿ p ÿ q ÿ 1� random variable, where rk is the sample
autocorrelation at lag k, n is the sample size, and M is a prespeci®ed integer depending on n. In
the present context, M is chosen as 20 and Q20 � 10:04 with a p-value of 0.902. This indicates
that the ARFIMA�1; d; 1� model ®ts the data reasonably well.

One-step predictions based on past observations of the exchange rate data are shown in
Figure 5. The forecasts are very close to the actual observations. Figure 6 displays a scatterplot of
the exchange rate and forecasts (the correlation coe�cient is 0.98).

Having ®tted a reasonable long-memory model, it will be interesting to ®nd out if this
statistically viable model produces useful forecasts. To this end, consider the following scheme.
Suppose that on the ®rst day of January of each year, 100 US dollars (or an equivalent amount of

Table IV. Exchange-rate data: exact parameter covariance matrix

d f1 y1

d 0.0039 ÿ0:0059 ÿ0:0031
f1 0.0333 0.0237
y1 0.0191

Figure 4. (a) Standardized residuals; (b) ACF of the residuals; (c) PACF of the residuals
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French francs) are available for investment. If, according to the forecast for January, the
exchange rate is going to decline at the end of the month, then 100r1 francs are bought, where r1 is
the exchange rate for January. These 100r1 francs are invested in a French money market through
the end of the month. On the other hand, if the exchange rate is expected to increase, then 100 US
dollars are bought and they are invested in the US money market for the current month. At the
end of January, a new forecast for February is obtained and all available capital is reinvested.
This procedure is repeated month to month throughout the year. Table V presents the annual
percentage returns of the strategy, assuming a uniform 8% annual return from the money
market. The average annual return is 14.45 with a standard deviation of 9.89. The high volatility
of the returns is re¯ected in Table V: the returns are very high for 1973, 1974, 1980, 1983, 1988
and 1992; the returns for 1975, 1978, 1982, 1984, 1987, 1989 and 1990 are below the average
8% annual return from the money market. Figure 7 displays a time-series plot of the annual
percentage returns. The 8% benchmark is also plotted. From this plot, it seems that a year of high
return is followed by a year of low return. This is con®rmed by the ®rst component of the
autocorrelation function of the returns, which is ÿ0:19. Overall, the strategy based on the
forecasts outperforms the 8% benchmark in 16 out of 23 years.

Figure 5. Forecasted and actual exchange rates (French francs to the US dollar). Dots: data; heavy
line: forecasts

Figure 6. Scatterplot of forecasted and actual exchange rates (French francs to the US dollar). Correlation
coe�cient: r̂ � 0:98
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As Figure 2 could suggest an MA(1) model, a short-memory ARMA(0,1) model, yt �
�1 ÿ yB�et; t � 1; . . . ; n, is also ®tted to the foreign exchange data for comparison. This
comparison is meaningful since adaptive techniques proposed in Tiao and Tsay (1994) based on
short-memory ARMA(1,1) models could provide reasonable forecasts for some long-memory
data.

The estimated value of y is ÿ0:329�ty � ÿ5:87� with the standard deviation of the
estimated residual ŝ � 0:0257. The modi®ed portmanteau statistics is Q20 � 13:34 with a
p-value of 0.71. The forecasting performance of this model is displayed in Table VI. The average

Table V. Annual percentage returns: ARFIMA�1; d; 1� model

Year Return (%) Year Return (%) Year Return (%)

1971 14.38 1979 12.91 1987 2.72
1972 8.97 1980 26.38 1988 30.38
1973 37.60 1981 13.90 1989 5.60
1974 17.44 1982 3.98 1990 4.47
1975 7.39 1983 28.94 1991 13.08
1976 8.28 1984 7.84 1992 30.62
1977 12.35 1985 14.12 1993 16.95
1978 3.10 1986 11.09

Figure 7. Annual percentage returns. Heavy line: strategy based on ARFIMA forecasts; dotted line:
8% benchmark

Table VI. Annual percentage returns: ARMA(0,1) model

Year Return (%) Year Return (%) Year Return (%)

1971 14.86 1979 9.71 1987 2.72
1972 8.97 1980 26.38 1988 30.38
1973 26.71 1981 13.90 1989 5.60
1974 16.05 1982 3.98 1990 4.47
1975 7.39 1983 28.94 1991 13.08
1976 9.60 1984 7.84 1992 30.62
1977 9.72 1985 14.12 1993 7.49
1978 3.10 1986 7.37
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return is 13.17 with a standard deviation of 9.12. Although the returns of this model are similar
to the ARFIMA model, in 1973 and 1993 it underperforms the long-memory counterpart for
about 10%.

Since economic time series are often incomplete, we also analyse the in¯uence of missing values
on the quality of forecasts for the ®tted model. For this purpose, the modi®ed Kalman ®lter
equations are used to calculate ML estimates of the missing data for the foreign exchange
model. Using the subroutine RNSRI in IMSL, a random sample of 10 locations is selected from
284 observations. The locations of missing observations selected by this procedure are: Oct. 74,
Nov. 78, May 79, Nov. 80, Jun. 81, Sep. 84, Jan. 85, Jun. 90, Feb. 92 and Oct. 92. Table VII
displays the results from the maximum likelihood estimation with incomplete data.

The residual standard deviation is ŝ � 0:0258. As displayed in Table VII, all the parameters
are signi®cant at the 95% level. However, the fractional parameter d for the incomplete data is
slightly smaller than the estimated value for the original data set. Moreover, the variance of the
parameter estimates given in Table VIII are slightly greater than those shown in Table II.
Figure 8 shows the time-series plots for the foreign exchange data. In order to achieve a higher

resolution, the full period 1971±94 is broken down into four subperiods. The ®gure also includes
the one-step predictions and 95% con®dence bands. The gaps in the time series plots correspond
to the locations of missing values.

Figure 9 plots the root mean square prediction error (RMSPE), rt �
�����������������������������
E��Yt ÿ Ŷ t�2�

q
. The

jumps in the sequence frtg introduced by the ten missing observations are clear from those plots.
In most cases, the change on the RMSPE persists for about 8 months.

The percentage changes between the forecasts with or without missing values are displayed in
Figure 10 and most of those changes are less than 1%. Thus, missing observations do not seem to
a�ect the forecasting power of this ARFIMA model substantially.

To assess the e�ect of the missing data on the performance of the business strategy discussed
earlier, the average of annual returns are plotted in Figure 11. For these randomly selected
locations, the performance of the new forecasts is comparable to the original predictions.

A similar study is also carried out for 84 other missing at random samples each of which
consists of ten missing observations. Their average annualized returns are displayed in Figure 12.
Also, 95% con®dence bands are plotted. As shown, most of the time the returns are above the
8% benchmark.

Table VII. Parameter estimation with missing observations

Parameter MLE t-statistic

d 0.130 2.0
f1 ÿ0:490 ÿ2:5
y1 ÿ0:671 ÿ4:4

Table VIII. Covariance matrix of parameters

d f1 y1

d 0.0041 ÿ0:0063 ÿ0:0033
f1 0.0379 0.0281
y1 0.0238
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Figure 8. Time-series plots of foreign exchange data. (a) 1971±6 period; (b) 1977±82 period; (c) 1983±8
period; (d) 1989±94 period. Heavy lines: data; broken lines: one-step predictions; dotted lines: upper and
lower 95% con®dence bands

Figure 9. RMSPE. (a) 1971±6 period; (b) 1977±82 period; (c) 1983±8 period; (d) 1989±94 period
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According to the previous analysis, French exchange rates seem to exhibit long-memory
behaviour. This conclusion agrees with the study of international foreign exchange data by
Cheung (1993). Furthermore, the ®tted ARFIMA�1; d; 1� model provides forecasts that are not
greatly a�ected by missing observations.

CONCLUSIONS

The problems of maximum likelihood estimation and forecasting of long-memory processes are
studied by means of the state-space models and the Kalman ®lter. Exact and approximate ML
estimates are considered. Since computations of exact ML estimates are cumbersome for data

Figure 10. Percentage change of forecasts. Heavy lines: percentage; vertical dotted lines: locations of
missing values

Figure 11. Annualized returns. Heavy line: missing value estimation; broken line: complete data estimation;
horizontal dotted line: 8% benchmark
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sets with moderate to large samples, approximate ML estimates obtained by truncating the state-
space representation are proposed to facilitate the ®tting of ARFIMA models. Numerical
calculations are reduced from an order of n3 for the evaluation of the exact likelihood function to
an order of n for the approximate likelihood. As demonstrated in this paper, the proposed method
performs well with a foreign exchange data set. It is hoped that these techniques will prove to be
useful for analyzing and forecasting long memory time series with missing observations.

APPENDIX

The coe�cients of expansion (2) can be calculated as follows. By de®nition,

c�z� � Y�z��1 ÿ z�ÿd
F�z� :

De®ne '�z� � Y�z�=F�z� and Z�z� � �1 ÿ z�ÿd . Thus, ' satis®es: F�z�'�z� � Y�z�. Therefore,Pp
i�0 fiz

i
P1

j�0 'jz
j � Pq

j�0 yjz
j, and then,

P1
j�0�

Pp
i�0 fi'jÿ i�z j �

Pq
j�0 yjz

j . Hence,Pp
i�0 fi'jÿ i � yj, and then, 'j � yj ÿ

Pp
i�1 fi'jÿ i, with '0 � 1 and yj � 0, for j > q.

On the other hand, the coe�cients of Z�z� � P1j�0 Zjz j are given by

Zj �
G�1 ÿ d�

G� j � 1�G�1 ÿ d ÿ j� :

Thus, based on the expansions of '�z� and Z�z�, the coe�cients cj can be calculated as follows:

c�z� � '�z�Z�z� �
X1
i�0

'iz
i

 ! X1
j�0

Zjz
j

 !
�
X1
i�0

Xi
j�0

'jZiÿ j

 !
z
i

hence, ci �
Pi

j�0 'jZiÿ j, for i5 0: &

Figure 12. Average annualized returns. Heavy line: missing value estimations; horizontal broken line:
8% benchmark; dotted lines: 95% con®dence bands
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