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Abstract. This paper analyses the asymptotic behaviour of the autocorrelation
structure exhibited by squares of time series with a Wold expansion where the input
error is a sequence of random variables with mean zero and finite kurtosis. Two important
cases are discussed: (i) when the errors are independent and, (ii) when the errors are
uncorrelated but their squares are correlated. Both situations are addressed when the
process exhibits short or long memory. Consequences of these results on certain models
widely used in many disciplines are also discussed.
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1. INTRODUCTION

Statistical analyses of time series are usually based on the study of the
autocorrelation function of the data. Nevertheless, the analysis of the squares
or higher powers of the time series may give valuable clues about crucial aspects
such as linearity, normality or memory of the process. These three aspects may
interact in the nature of the process and their effects may be uncovered by a
careful analysis of the autocorrelation of both the original series and its square.
This occurs, for example, in financial economics, where several empirical studies
have evidenced the presence of peculiar characteristics named stylized facts. These
include, among others, lack of or very little autocorrelation, possible strong
correlation of the squares of the series and non-normality (see for example Baillie,
1996; Shephard, 1996; Lobato and Savin, 1998). Similar features have been
observed in data from other fields. In physics, for instance, the presence of strong
autocorrelation in the squares of differences in velocity of the mean wind direction
has been explored by Barndorff-Nielsen and Shephard (2000), and Mantegna and
Stanley (2000).

In order to model the stylized facts in economic time series, Engle (1982)
proposed the autoregressive conditional heteroskedasticity, ARCH model. Based
on this seminal work a plethora of related models have been introduced: GARCH
models (Taylor, 1986; Bollerslev, 1986), EGARCH models (Nelson, 1991),
stochastic variance models (Harvey et al., 1994), FIGARCH models (Baillie et al.,
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1996; Bollerslev and Mikkelsen, 1996), LMGARCH models (Robinson, 1991;
Robinson and Henry, 1999; Henry, 2001, among others). A key feature of these
models is the time-varying conditional variance which is related to time-
dependent squares.

An important issue in the statistical analysis of time series is determining
whether the observations or a transformation of them, such as the squares, have
short or long memory. A short-memory process has autocorrelations decaying to
zero exponentially as the lag increases. In contrast, the autocorrelations of a long-
memory process decay to zero at a hyperbolic rate. The autoregressive moving
average (ARMA) model described by Box et al. (1994) is an example of short-
memory process. On the other hand, one of the most well-known long-memory
model is the autoregressive fractionally integrated moving average (ARFIMA)
(see Granger and Joyeux, 1980; Hosking, 1981). The subject of long-memory
modelling has been extensively revised in the time series literature (see for
instance, Beran, 1994; Lewis and Ray, 1997; Chan and Palma, 1998; among
others). In financial time series, the presence of long memory in some square asset
returns was evidenced by Baillie (1996) and Bollerslev and Mikkelsen (1996), to
name a few. The analysis of the covariance structure of these series has been
advanced by exact expressions for the autocorrelations of the squares obtained
by Karanasos (1999) and He and Teräsvirta (1999) for the GARCH model, by
Karanasos and Kim (2001) and He et al. (2002) for the EGARCH process, by
Demos (2002) for a model that nests both the EGARCH and stochastic volatility
specifications and by Karanasos et al. (2004) for FIGARCH and LMGARCH
models. On the other hand, asymptotic expressions for the autocovariance
function of squares and other nonlinear transformations of a class of stochastic
volatility models have been established by Robinson (2001). Furthermore, model
identification by analysing the autocorrelation function of squares is addressed by
Bollerslev (1988) for GARCH processes and by Karanasos and Kim (2001) for
EGARCH processes. Diagnostics checking of nonlinear models with conditional
heteroskedasticity through the squares of residuals is discussed by Li and Mak
(1994), Granger and Andersen (1978), Maravall (1983) and McLeod and Li (1983)
for the univariate case and Ling and Li (1997b) for the multivariate case, among
others.

This paper discusses some key statistical properties of the autocorrelation of the
square of a time series with a moving average expansion. First, an exact
expression for the autocorrelations of squared values is given. Second, the
asymptotic behaviour of the autocorrelations of the squares of the series is
investigated, establishing whether they have short or long memory and specifying
their decaying rates. The class of models studied include for example, ARMA
processes, ARFIMA models and a wide class of conditional heteroskedastic
models such as GARCH, EGARCH, FIGARCH, LMARCH, among others. The
results presented in this work are highly relevant since they help to identify
the nature of the process by analysing the autocorrelation function of both the
original and the square of the series. Furthermore, by analysing the behaviour of
the autocorrelation of the squares of these processes, it is possible to discard those
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theoretical models which are incompatible with the data under study. In addition,
the autocorrelations of the squares of the observed series can be used to estimate
the parameters of the underlying process. For GARCH models, this method was
used by Baillie and Chung (2001) to obtain minimum distance estimators.

This paper is organized as follows. A characterization of the autocorrelation
function of the squares of a time series having a Wold expansion and its
asymptotic behaviour are discussed in Section 2. These theoretical results are
applied in Section 3 to the study of the correlation structure of several well known
models. Conclusions are presented in Section 4 and proofs of theorems are
presented in the Appendix.

2. CHARACTERIZATION OF THE CORRELATION OF SQUARES

The behaviour of the autocorrelation function of the square of a time series with
Wold decomposition is discussed in this section. Consider the following process
{yt} with expansion

yt ¼ WðBÞet; ð1Þ

where

WðBÞ ¼
X1
i¼0

wiB
i; w0 ¼ 1;

X1
i¼0

w2
i < 1;

and et has finite kurtosis, g. If {et} is a sequence of i.i.d. random variables (strict
white noise), then (1) generates a linear process. On the other hand, if the
sequence {et} is white noise but not strict, then the resulting process may be
nonlinear (see for example Mills, 1999, p. 28). Therefore, two situations are
distinguished in this study: when {yt} is a linear process and when {yt} is a
nonlinear process. In addition, these two cases are addressed for both short and
long memory filter, W(B). Note that for a short-memory filter, wi � vi for some
|v| < 1 whereas for a long-memory filter wi � i)b for some b 2 ð1=2; 1Þ.

This section contains two parts. An explicit expression for the autocorrelation
function of the squared process, qy2(n), is given in Theorem 1 in Section 2.1. A
consequence of this result, Corollary 1, concerns the specific case of a linear
process obtained when the input sequence, {et}, is independent. In addition, the
asymptotic behaviour of qy2(n) is analysed in Section 2.2 for both linear and
nonlinear processes and the results are summarized in Theorems 2, 3 and 4. These
two cases are discussed for both short- and long-memory filters W(B) in (1).

2.1. Autocorrelation function of squared processes (ACFSq)

Assume that {et} are random variables with zero mean, finite kurtosis,
g ¼ Eðe4t Þ=½Eðe2t Þ�

2, uncorrelated but not necessarily independent with
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EðeuevÞ ¼ r2 if u ¼ v
0 elsewhere,

�
ð2Þ

EðeseteuevÞ ¼
½1þ ðg 
 1Þqe2ðs
 vÞ�r4 if s ¼ t; u ¼ v or s ¼ u; t ¼ v
½1þ ðg 
 1Þqe2ðs
 tÞ�r4 if s ¼ v; t ¼ u
0 elsewhere.

(
ð3Þ

The next theorem establishes an explicit expression for the autocorrelation
function of fy2t g for linear and nonlinear processes satisfying both (2) and (3).
This formula plays a key role in the theorems presented in the next subsection
dealing with the asymptotic behaviour of the autocorrelation function of the
square observations.

Theorem 1. For the process defined by (1) with errors satisfying (2) and (3) with
finite kurtosis g, the autocorrelation function of the squared process, qy2, is given by

qy2ðnÞ ¼
2

j 
 1
q2
yðnÞ þ

j 
 3

j 
 1
aðnÞ þ g 
 1

j 
 1
½sðnÞ þ 2DðnÞ 
 3Dð0ÞaðnÞ�; ð4Þ

where the autocorrelation function of the process {yt} is defined as

qyðnÞ ¼
X1
i¼0

w2
i

 !
1X1
i¼0

wiwiþn; ð5Þ

and

aðnÞ ¼
X1
i¼0

w4
i

 !
1X1
i¼0

w2
i w

2
iþn; ð6Þ

DðnÞ ¼
X1
i¼0

w2
i

 !
2X1
i¼0

X1
j¼0

wiwjwiþnwjþnqe2ði
 jÞ; ð7Þ

sðnÞ ¼
X1
i¼0

w2
i

 !
2X1
i¼0

X1
j¼0

w2
i w

2
jqe2ðnþ j
 iÞ; ð8Þ

j ¼ 3
 2g
X1
i¼0

w2
i

 !
2X1
i¼0

w4
i þ 3ðg 
 1ÞDð0Þ; ð9Þ

where j is the kurtosis of yt and qe2 is the autocorrelation function of fe2t g.
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Observe that if the sequence {et} is a strict white noise then

sðnÞ ¼ DðnÞ ¼ Dð0ÞaðnÞ ¼
X1
i¼0

w2
i

 !
2X1
i¼0

w2
i w

2
iþn;

and therefore s(n) + 2D(n) ) 3D(0)a(n) ¼ 0. Replacing this in expression (4),
given by Theorem 1, yields the following result for a linear process which was first
obtained by Taylor (1986).

Corollary 1. (Linear process): Assume that {et} are i.i.d. random variables with
zero mean and finite kurtosis g. Then,

qy2ðnÞ ¼
2

j 
 1
q2
yðnÞ þ

j 
 3

j 
 1
aðnÞ; ð10Þ

where j is the kurtosis of yt given by

j ¼ ðg 
 3Þ
X1
i¼0

w2
i

 !
2X1
i¼0

w4
i þ 3: ð11Þ

Expression (4) given by Theorem 1 is highly relevant to theoretical and
applied aspects of the analysis of times series. On the theoretical side, (4)
establishes an explicit relationship between the autocorrelation of y2t and yt and
extends expression (10) to nonlinear processes by adding a new term involving
qe2. Moreover, it gives a framework for finding an exact expression for qy2 by
evaluating (5)–(9) and, as shown in Section 2.2, it allows for the analysis of the
asymptotic behaviour of the autocorrelations of the squares. On the
application side, it helps the identification of the nature of the process by
discarding those models incompatible with the data. In this sense, Baillie and
Chung (2001) observe that ‘several previous articles dealing with financial
market data have commented on the behaviour of the autocorrelations of the
squared returns series, and the desirability of having a model which comes
close to replicating the autocorrelations of the square returns’. Accordingly,
Theorem 1 is a tool to analyse whether a particular model can replicate the
correlation structure of the data. Furthermore, (4) can be used to obtain the
minimum distance estimator of the parameters of heteroskedastic models
(cf. Baillie and Chung, 2001).

2.2. Asymptotic behaviour of ACFSq

Based on Corollary 1, the next theorem establishes the asymptotic behaviour of
the autocorrelation function of squares for linear process. In what follows,
xn ¼ O(xn) means that |xn/xn| £ c for all n, where c is a positive constant.

Theorem 2. (Independent input): Let {yt} be a process satisfying (1) with {et} a
strict white noise sequence with finite kurtosis g. Then
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(a) Short-memory filter: If wi � ti for some |t| < 1, then both a(n) and qy2(n)
are O(t2n).

(b) Long-memory filter: If wi � i)b for some b 2 (1/2,1), then a(n) is O(n)2b)
and qy2(n) is O(n

2)4b).

Hosking (1996) points out, without formal proof, Theorem 2(b) for the case
b 2 (1/2, 3/4). In addition, for a short-memory linear process qy(n) ¼ O(vn) and
qy(n) ¼ O(n1)2b) in the long-memory case, cf. Brockwell and Davis (1991, p. 520).

Observe that Theorem 2(a) states that the decaying rate of the autocorrelation
function of the square of a linear short-memory time series is twice as fast as the
decaying rate of the autocorrelation function of the original series. That is, qy(n)
requires twice as many lags, n, to achieve a similar value of qy2(n) [qy(2n) @ qy2(n)].
On the other hand, by virtue of Theorem 2(b), for a linear long-memory time
series, the decaying rate of the square of the series equals the square root of the
decaying rate of the original series, i.e. qyðnÞ ffi qy2ð

ffiffiffi
n

p Þ, cf. Table I for the
independent input case.

In the context of nonlinear processes, comparing expressions (4) and (10) we
note the presence of an additional term for the nonlinear case which involves two
quantities, s(n) and D(n). As a consequence of Lemma 5 in the Appendix, D(n) and
q2
yðnÞ have the same order, however s(n) may have a different asymptotic order.

The following two theorems establish the asymptotic behaviour of the
autocorrelation function of squares for two important situations

qe2ðmÞ � ajmj; 0 < a < 1; ð12Þ

qe2ðmÞ � jmj
k; 0 < k < 1: ð13Þ

TABLE I

Asymptotic Behaviour of Autocorrelation Function of the Squares of the Process

yt ¼
P1

i¼0 wiet
i where et has Finite Kurtosis g, 0 < a < 1, 0 < k < 1, |v| < 1, b 2 ð12 ; 1Þ and

k + 2b > 2

Short-memory filter (wi � vi) Long-memory filter (wi � i)b)

Linear: Independent input
a(n) O(v2n) O(n)2b)
qy(n) O(vn) O(n1)2b)
qy2(n) O(v2n) O(n2)4b)

Nonlinear: Short memory input: qe2(n) � an

D(n) O(v2n) O(n2)4b)
a(n) O(v2n) O(n)2b)
s(n) O([max{v2, a}]n) O(n)2b)
qy(n) O(vn) O(n1)2b)
qy2(n) O([max{v2, a}]n) O(n2)4b)

Nonlinear: Long memory input: qe2(n) � n)k

D(n) O(v2n) O(n2)4b)
a(n) O(v2n) O(n)2b)
s(n) O(n)k) O(n2)2b)k)
qy(n) O(vn) O(n1)2b)
qy2(n) O(n)k) O(n2)2b)k)
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Note that under condition (12), the square of the input sequence {et} has short
memory. On the other hand, under condition (13) this sequence has long memory.
In what follows, short-memory input means that e2t has short memory. Besides,
long-memory input indicates that e2t is a long-memory process.

Theorem 3. (Short-memory input): Consider a process satisfying (1) and assume
conditions (2) and (3) with error sequence satisfying (12) and finite kurtosis g. Then

(a) Short-memory filter: If wi � ti for some |t| < 1, then qy(n) ¼ O(tn), a(n)
and D(n) are O(t2n), and s(n) ¼ O([max{t2, a}]n). Therefore, qy2(n) is
O([max{t2,a}]n).

(b) Long-memory filter: If wi � i)b for some b 2 ð12 ; 1Þ, then qy(n) ¼ O(n1)2b),
a(n) and s(n) are O(n)2b), and D(n) is O(n2)4b). Consequently, qy2(n) is
O(n2)4b).

Theorem 4. (Long-memory input): Consider a process satisfying (1). Under
conditions (2) and (3) with error sequence satisfying (13) and finite kurtosis g.
Then

(a) Short-memory filter: If wi � ti for some |t| < 1, then qy(n) ¼ O(tn), a(n)
and D(n) are O(t2n), and s(n) ¼ O(n)k). Consequently, qy2(n) is O(n

)k).
(b) Long-memory filter: If wi � i)b for some b 2 ð12 ; 1Þ and 0 < k < 1,

then qy(n) ¼ O(n1)2b), a(n) is O(n)2b), D(n) is O(n2)4b), and s(n) is
O(n2)k)2b) for k + 2b > 2. Therefore, qy2(n) is O(n

2)k)2b).

These results are summarized in Table I. From this table, the square of a linear
process has an autocorrelation structure similar to the square of the
autocorrelation of the original series, no matter what the distribution of the
process is or the memory introduced by the Wold expansion. On the other hand,
the autocorrelation function of the square of a nonlinear process depends on both
the memory of the squares of the input error sequence and the structure of the
Wold expansion. For instance, in the case that the squares of the input sequence
{et} have short memory, if the filter presents long memory then the process fy2t g has
long memory. The same occurs for the nonlinear case with short-memory filter and
squares of the input sequence with long memory. Besides, if both the filter and the
input sequence are short memory, then fy2t g has short memory. Finally, if the filter
and the input sequence have long memory, then fy2t g has long memory.
Applications of these results to specific models are discussed in the next section.

3. APPLICATIONS

An important contribution of the theorems discussed in Section 2 is that they
allow us to establish, for each particular model satisfying the Wold decomposition
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(1), whether it has the ability to reproduce key features exhibited by the data or
not. These characteristics include, for example, time series with very little
autocorrelation but with strongly dependent squares; time series with strong
dependency but weakly dependent squares; strongly dependent processes and
their squares or weakly dependent processes and weakly dependent squares.

In what follows we apply the results from the previous section to the statistical
analysis of some well-known linear and nonlinear time series models. We focus
our attention on the class of models specified by the Wold decomposition in (1)
and by the following expression for the error sequence {et}:

et ¼
ffiffiffiffi
ht

p
�t; ð14Þ

where {�t} is a strict white noise sequence with zero mean, and unit variance, ht is
the conditional variance of et given Ft)1, the r-field generated by the past
information {et)1, et)2,…}. Observe that by setting ht equal to a positive constant
for all t, the class of linear processes is obtained. On the other hand, by specifying
an evolution of ht in terms of Ft)1 we obtain many other nonlinear time series,
including the conditional heteroskedasticity processes. These models are widely
used, among other areas, for modelling financial market volatility (see for
example, the surveys by Bollerslev et al., 1992; Baillie, 1996; Ghysels et al., 1996;
Shephard, 1996). For clarity, we discuss linear and nonlinear processes
separately.

3.1. Linear processes

A well-known class of linear strongly dependent processes is the ARFIMA model
(see for example, Hosking, 1981), defined by the discrete-time equation

UðBÞð1
 BÞdyt ¼ HðBÞet; ð15Þ

where |d| < 1/2, {et} is a strict white noise sequence with zero mean and variance
r2

e , B is the backshift operator

Byt ¼ yt
1; UðBÞ ¼ 1
 /1B
 � � � 
 /pB
p and HðBÞ ¼ 1þ h1 þ � � � þ hqBq

are polynomials of degrees p and q, respectively, with no common zeroes and all
their roots outside the unit circle, and (1 ) B)d is the fractional difference operator
defined by the binomial series

ð1
 BÞd ¼
X1
k¼0

ðk 
 d 
 1Þ!
k!ð
d 
 1Þ! B

k:

ARFIMA processes have been widely used for modelling long-range
dependency (see for example, Beran, 1994; Palma and Del Pino, 1999, among
others).

If d ¼ 0, (15) corresponds to a short-memory ARMA process (cf. Brockwell
and Davis, 1991, p. 524), and exact expressions for the autocorrelations of this
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process, qy, are given in Zinde-Walsh (1988). For 0 < d < 1/2, (15) is a long-
memory process and Sowell (1992) gives exact formulae for the autocorrelation
function, qy. In this case, wi � i)b for large i, where b ¼ 1 ) d and
qy(n) ¼ O(n1)2b) for large lag n.

It is well known that if {et} is Gaussian, then qy2ðnÞ ¼ q2
yðnÞ ¼ Oðn2
4bÞ

(cf. Beran, 1994, p. 71). However, as a consequence of Theorem 2(b),
qy2(n) ¼ O(n2)4b) for any distribution of the error sequence {et} with finite
kurtosis. Hence, if 1/4 < d < 1/2, then the squares have long memory. If
0 < d < 1

4 , then the squares have intermediate memory as defined in Brockwell
and Davis (1991, p. 520), i.e. they have absolutely summable autocorrelations
decaying to zero at an hyperbolic rate.

A class of linear processes with uncorrelated observations but with possibly
correlated squares, is the so-called all-pass models discussed by Breidt et al.
(2001). A causal all-pass time series is an ARMA process {yt} satisfying the
difference equation

/0ðBÞyt ¼
Bp/0ðB
1Þ


/0r
et;

where {et} is a strict white noise with continuously differentiable distribution in a
neighborhood of zero and has median zero,

/0ðzÞ ¼ 1
 /01z
 � � � 
 /0pz
p;

where /0(z) „ 0 for |z| £ 1, /00 ¼ 1, /0r „ 0 for some r ¼ 0, 1,…, p and /0j ¼ 0
for j ¼ r + 1,…, p. One interesting property of this model is that if the error
sequence {et} is Gaussian then the process {yt} is strict white noise and therefore
its squares are also strict white noise. On the other hand, if the error sequence is
non-Gaussian, then {yt} is a nonstrict white noise and fy2t g may exhibit some
degree of correlation. However, since the linear filter has exponentially decaying
coefficients, wi � vi, an application of Theorem 2(a) indicates that the process
fy2t g has fast decaying autocorrelations and therefore it cannot display long-
memory behaviour.

3.2. Non-linear processes

When the conditional variance ht is no longer constant, a wide class of nonlinear
processes arises. In what follows, we analyse a number of specifications for the
filter W(B) in (1) and the evolution of ht in (14). As described below, there are four
combinations of these two elements: short- or long-memory filter and short- or
long-memory input e2t which memory depends on the function ht. Of these four
combinations, only the first, i.e. short-memory filter and short-memory input
produces a short-memory squared data, fy2t g, and all the other combinations
produce long-memory output, cf. Table I. In what follows, ARMA and
ARFIMA filters correspond to
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WðBÞ ¼ HðBÞUðBÞ
1 and WðBÞ ¼ HðBÞUðBÞ
1ð1
 BÞ
d ;

respectively, where Q(B) and U(B) were defined in (15).

3.2.1. Short-memory input, short-memory filter
One of the simplest ways to specify a short-memory filter in the context of (1) and
(14) is by setting W(B) ¼ 1. In this case, there are several models containing
squared errors with short-memory behaviour as in (12) including, for example, the
ARCH(q) process introduced by Engle (1982) where

ht ¼ x þ
Xq
i¼1

hie
2
t
i;

the GARCH(p,q) model proposed by Bollerslev (1986) and Taylor (1986) where

ht ¼ x þ
Xq
i¼1

hie
2
t
i þ

Xp
j¼1

/jht
j;

the exponential GARCH, EGARCH(p,q) model proposed by Nelson (1991)
where

logðhtÞ ¼ x þ 1þ
Xq
i¼1

hiBi

 !
1


Xp
j¼1

/jB
j

 !
1

gð�t
1Þ

with g(�t) ¼ h�t + c[|�t|)E|�t|] and the N-component GARCH(1,1) (cf. Ding and
Granger, 1996) where

ht ¼
XN
i¼1

xihi;t with hi;t ¼ r2ð1
 ai 
 biÞ þ aie
2
t
1 þ bihi;t
1:

Another approach for modelling volatility is the stochastic variance (SV) model
discussed by Harvey et al. (1994) where

logðhtÞ ¼ c logðht
1Þ þ nt;

�t has standard normal distribution and nt is a normal variable with zero mean
and variance r2

n, independent of �t.
Exact expressions for the autocorrelation function of squared errors, namely e2t ,

of some of the previously mentioned models have been derived in the literature.
For instance, Karanasos (1999) and He and Teräsvirta (1999) establish exact
formulae for qe2 in GARCH(p,q) models and study conditions for the existence of
the fourth moment of the errors. All these results still hold when the distribution
of �t is non-Gaussian. Similar results are found for the N-component
GARCH(1, 1) model, which can be expressed as a GARCH(N, N) process, and
the two-component GARCH(N, N) (see Karanasos, 1999). Furthermore, in the
context of exponential GARCH models, exact expressions for qe2 are given by
He et al. (2002) for the particular case EGARCH(1, 1); by Karanasos and Kim
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(2001) for the EGARCH(p, q) model; and by Demos (2002) for a model that nests
both EGARCH and stochastic volatility specifications.

By specifying an ARMA filter in (1) combined with a short-memory input
sequence, more complex models for the data {yt} are produced. Thus, if {et}
follows a GARCH process then the class of ARMA–GARCH models is obtained
(see Weiss, 1986). Another example is the ARMA–EGARCH process studied by
Karanasos and Kim (2001) and Demos (2002), obtained when {et} follows an
EGARCH process.

By an application of Theorem 3(a), we observe that, under some conditions,
fy2t g has short memory in all the previous models. On the contrary, the processes
investigated in the following three categories have long-memory output, fy2t g, as
shown in Table I.

3.2.2. Short-memory input, long-memory filter
In order to incorporate long-memory in the sequence of observations of (1), Ling
and Li (1997a) propose a fractionally integrated autoregressive model with
conditional heteroskedasticity, ARFIMA(p, d, q)-GARCH(r, s). This is a discrete
time process with W(B) as in (15), �t as in (14) with standard normal distribution,
and

ht ¼ x þ
Xr
i¼1

aie
2
t
i þ

Xs
j¼1

bjht
j:

If |d| < 0.5, all roots of U(B) and Q(B) are outside the unit circle and

Xr
i¼1

ai þ
Xs
j¼1

bj < 1;

then {yt} is invertible, strictly stationary and ergodic. From (2), it can be shown
that the autocorrelation function of ARFIMA–GARCH and ARFIMA models is
the same. Since fe2t g has short memory, from Theorem 3(b) and following the
discussion in Section 3.1 for ARFIMA models, we conclude that in ARFIMA–
GARCH models the observations have long-memory if 0 < d < 1=2; however,
the squares of observations have intermediate-memory if 0 < d < 1/4 and the
squares have long-memory if 1/4 < d < 1/2. Similar conclusions are reached by
an application of Theorem 3(b) to ARFIMA–EGARCH models.

3.2.3. Long-memory input, short-memory filter
As in the previous cases, if W(B) in (1) corresponds to an ARMA filter, we obtain
a large class of processes with short-memory filter and long-memory input.
Among these models with W(B) ¼ 1, we find: the FIEGARCH(p, d, q) process
proposed by Bollerslev and Mikkelsen (1996), where

ð1
 BÞd logðhtÞ ¼ 1þ
Xq
i¼1

hiBi

 !
aðBÞ
1gð�t
1Þ;

539CORRELATION STRUCTURE OF SQUARE TIME SERIES

� Blackwell Publishing Ltd 2004



with a(B) satisfying

1

Xp
j¼1

/jB
j ¼ aðBÞð1
 BÞd

and g(Æ) defined in Section 3.2.1; and the LMGARCH model examined in
Robinson (1991), Robinson and Henry (1999) and Henry (2001), where

ht ¼ ½1
ð1
BÞdaðBÞbðBÞ
1�e2t ; with aðBÞ ¼ 1

Xr
j¼1

ajBj and bðBÞ ¼ 1þ
Xs
i¼1

biBi:

For the latter model, exact expressions for qe2 was found by Karanasos et al.
(2004). These models can be extended by applying an ARMA filter W(B) to
FIEGARCH and LMGARCH errors producing the ARMA–FIEGARCH and
ARMA–LMGARCH processes, respectively see for example (Bollerslev and
Mikkelsen, 1996; Robinson and Henry, 1999; Henry, 2001, among others).
Observe that, under conditions of Theorem 4(a), the squared observations in all
aforementioned models have long memory.

Another interesting example of long-memory sequence error is the FIGARCH
model discussed by Baillie et al. (1996) and Bollerslev and Mikkelsen (1996),
where ht ¼ x þ ½1
 ð1
 BÞdaðBÞbðBÞ
1�e2t , with positive x. This model is
strictly stationary but not covariance stationary. However, as pointed out by
Henry (2001), for this class of models the autocorrelation function of squares can
be well defined even though the fourth moment fe4t g is not finite. In fact,
Karanasos et al. (2004) have shown that, under certain conditions, qe2 is the same
for FIGARCH and LMGARCH models.

3.2.4. Long-memory input, long-memory filter
This class of double long-memory models includes, for example, combinations of
ARFIMA filters and conditionally heteroskedastic input with long-range
dependency such as the aforementioned FIEGARCH or LMGARCH
processes. As a result, the ARFIMA–FIEGARCH and ARFIMA–LMGARCH
processes are obtained. In this context, suppose that the sequence fe2t g is strongly
dependent with k ¼ 1 ) 2de in (13); the linear filter in (1) has long memory, i.e.
wi � i)b with b ¼ 1 ) dy; 0 < de, dy < 1/2 and de + dy < 1/2. Then, under
conditions of Theorem 4(b), qy2(n) is O(n

2(de+dy))1), i.e. the squares behave like a
long-memory process with parameter d* ¼ de + dy < 1/2 (see Robinson and
Hidalgo, 1997 for a similar type of result in the linear regression context).
Moreover, given that under some conditions the squares of FIGARCH and
LMGARCH processes share the same autocorrelation function (cf. Karanasos
et al., 2004), the squared ARFIMA-FIGARCH also has long memory.

In order to incorporate long range dependency in the squared errors, Harvey
(1998) introduces a modification of the stochastic variance models (SV) described
in Section 3.2.1: the so-called long-memory stochastic volatility (LMSV) processes
defined by (1)B)de log(ht) ¼ nt. In this case, if r2

n is small or q log(h) is close to one,
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then qe2(n) @ q log(h)(n). Thus, the squared error sequence has long memory. In
addition, if we consider a long-memory filter in (1), for example
W(B) ¼ (1 ) B))dy, then by virtue of Theorem 4(b) we conclude that fy2t g is a
long-range-dependent process with long-memory parameter d* as above.

4. CONCLUSIONS

The results discussed in this paper help to determine the asymptotic behaviour of
the autocorrelation function of the squares of a wide variety of linear and
nonlinear time series models. For illustration purposes, we have applied these
results to some well-known processes; however, they may be used to evaluate
many other models which can be expressed by the expansion (1). Furthermore,
equation (4) gives an exact expression for the autocorrelation function of the
squares and quantifies the departure of this from the autocorrelation function of
the original process. These results still hold when the underlying distribution of
the input error sequence is non-Gaussian but has finite kurtosis.

APPENDIX

Proof of Theorems

We start this section with the proof of Theorem 1 and then proceed showing five technical

lemmas that are needed in the proof of Theorems 2–4.

Proof of Theorem 1. Without loss of generality we consider n ‡ 1. Let,

S1 ¼ Eðy2t y2t
nÞ ¼
X1
i¼0

X1
j¼0

X1
l¼0

X1
m¼0

wiwjwlwmEðet
iet
jet
n
let
n
mÞ: (A.1)

From (2) and (3) we have the following situations for the terms of S1. If i ¼ j, l ¼ m and
i ¼ n + l then we have

S11 ¼ gr4
X1
l¼0

w2
lw

2
lþn:

If i ¼ j, l ¼ m and i „ n + l we have

S12 ¼ r4
X1
i¼0

X1
l¼0

w2
i w

2
l ½1þ ðg 
 1Þqe2ðnþ l
 iÞ�I½i6¼nþl�;

and since I[i „ n+l]¼1 ) I[i¼n+l],

S12 ¼ r4
X1
i¼0

w2
i

 !2

þr4ðg 
 1Þ
X1
i¼0

X1
l¼0

w2
i w

2
lqe2ðnþ l
 iÞ 
 r4g

X1
l¼0

w2
lw

2
lþn:
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If i ¼ n + m „ j ¼ n + l we have

S13 ¼ r4
X1
l¼0

X1
m¼0

wlwmwnþlwnþm½1þ ðg 
 1Þqe2ðl
 mÞ�I½m 6¼l�;

and since I[m „ l] ¼ 1 ) I[m¼l],

S13 ¼ r4
X1
l¼0

wlwlþn

 !2

þr4ðg 
 1Þ
X1
l¼0

X1
m¼0

wlwmwlþnwmþnqe2ðm
 lÞ 
 r4g
X1
l¼0

w2
lw

2
lþn:

The same expression S13 is obtained for the case i ¼ n + l „ j ¼ n + m and the other
terms of the sum S1 are zero. Therefore (A.1) can be expressed as S1 ¼ S11 + S12 + 2S13,
i.e.

S1 ¼ Eðy2t y2t
nÞ ¼ r4 
2g
X1
i¼0

w2
i w

2
iþn þ

X1
i¼0

w2
i

 !2

þ ðg 
 1Þ
X1
i¼0

X1
j¼0

w2
i w

2
jqe2ðnþ j
 iÞ

8<
:

þ 2
X1
i¼0

wiwiþn

 !2

þ 2ðg 
 1Þ
X1
i¼0

X1
j¼0

wiwjwiþnwjþnqe2 ðj
 iÞ

9=
;: ðA:2Þ

On the other hand, from (2) and (3),

S2 ¼ Eðy2t Þ ¼
X1
i¼0

X1
j¼0

wiwjEðet
iet
jÞ ¼ r2
X1
i¼0

w2
i : (A.3)

Observe that covðy2t ; y2t
nÞ ¼ S1 
 S22 . Hence, from (A.2) and (A.3) we obtain

cðnÞ ¼ covðy2t ; y2t
nÞ ¼ r4 
2g
X1
i¼0

w2
i w

2
iþn þ ðg 
 1Þ

X1
i¼0

X1
j¼0

w2
i w

2
jqe2ðnþ j
 iÞ

(

þ 2
X1
i¼0

wiwiþn

 !2

þ 2ðg 
 1Þ
X1
i¼0

X1
j¼0

wiwjwiþnwjþnqe2ðj
 iÞ

9=
;;

cð0Þ ¼ r4 
2g
X1
i¼0

w4
i þ 2

X1
i¼0

w2
i

 !2

þ 3ðg 
 1Þ
X1
i¼0

X1
j¼0

w2
i w

2
jqe2 ðj
 iÞ

8<
:

9=
;:

Since qy2(n) ¼ c(n)/c(0), and taking into account qy(n), a(n), D(n), s(n), defined in (5), (6),
(7), (8), respectively, we have,

qy2ðnÞ ¼ 
2gaðnÞ
P1

i¼0 w4
i

ð
P1

i¼0 w2
i Þ

2
þ ðg 
 1ÞsðnÞ þ 2q2

yðnÞ þ 2ðg 
 1ÞDðnÞ
( ),


2g

P1
i¼0 w4

i

ð
P1

i¼0 w2
i Þ

2
þ 2þ 3ðg 
 1ÞDð0Þ

( )
: ðA:4Þ

Furthermore, given that j is the kurtosis of yt, then from (A.2) with n ¼ 0 and (A.3) we
obtain,
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j ¼ Eðy4t ÞfEðy2t Þg

2

¼ 
2g
X1
i¼0

w4
i þ 3

X1
i¼0

w2
i

 !2

þ 3ðg 
 1Þ
X1
i¼0

X1
j¼0

w2
i w

2
jqe2 ðj
 iÞ

8<
:

9=
;

X1
i¼0

w2
i

( )
2

¼ 3
 2g
X1
i¼0

w4
i

( ) X1
i¼0

w2
i

( )
2

þ 3ðg 
 1ÞDð0Þ:

Hence, the denominator in (A.4) is equal to j)1. Now, by replacing


2g

P1
i¼0 w4

i

ð
P1

i¼0 w2
i Þ

2
¼ j 
 3
 3ðg 
 1ÞDð0Þ

into the numerator of (A.4) and arranging terms, expression (4) is obtained. QED

Lemma 1. Let d 2 (1, 2), n ‡ 1. Then

X1
j¼1

½jðj þ nÞ�
d ¼ Oðn
dÞ: ðA:5Þ

Proof. Since ð1 þ j
nÞ


d � 1 for n, j ‡ 1 then

X1
j¼1

½jðj þ nÞ�
d ¼ n
d
X1
j¼1

j
d 1 þ j
n

� �
d

� n
d
X1
j¼1

j
d:

But
P1

j¼1 j

d < 1 for d 2 (1,2), hence the result follows. QED

Lemma 2. For a < 1,

lim
m!1

m2b
Xm
1

i¼1

aiðm
 iÞ
2b ¼ a
1
 a

:

Proof. Let

bm ¼ m2b
Xm
1

i¼1

aiðm
 iÞ
2b ¼ m2b
Xm
1

j¼1

am
jj
2b

then ðmþ 1Þ
2bbmþ1 ¼ am
2bbm þ am
2b and bmþ1 ¼ að1þ m
1Þ2bbm þ að1þ m
1Þ2b:
Thus, the result follows as m fi 1. QED

Lemma 3. Let wi � i

b with b 2 ð12 ; 1Þ,

(a)
P1

i¼0 wiwiþn ¼ Oðn1
2bÞ.
(b)

P1
i¼0 w2

i w
2
iþn ¼ Oðn
2bÞ.

(c) If qe2 satisfies (12) then
P1

i¼0 w2
i qe2ðm
 iÞ ¼ Oðm
2bÞ for m ‡ 1.

(d) If qe2 follows (13) with k < 1 and k + 2b > 2, then
P1

i¼0 w2
i qe2 ðm
 iÞ

¼ Oðm2
k
2bÞ for m ‡ 1.
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Proof. (a) Direct from Hosking (1981). (b) Follows directly from Lemma 1 with
d ¼ 2b. (c) Let

Am ¼
X1
i¼0

w2
i qe2ðm
 iÞ:

Thus,

Am � am þ
X1
i¼1

i
2bajm
ij

and then,

Am � am þ
Xm
1

i¼1

aiðm
 iÞ
2b þ m
2b þ
Xm
1

i¼1

aiðmþ iÞ
2b þ am
X1
i¼0

aið2mþ iÞ
2b: ðA.6Þ

Let

P1 ¼
Xm
1

i¼1

aiðm
 iÞ
2b; P2 ¼
Xm
1

i¼1

aiðmþ iÞ
2b and P3 ¼ am
X1
i¼0

aið2mþ iÞ
2b:

By applying Lemma 2 to P1 we conclude that P1 ¼ O(m)2b). On the other hand, since

ðmþ iÞ
2b � ðm
 iÞ
2b for i � 1 then P2 � P1 and P2 ¼ Oðm
2bÞ:

Besides, given that

ð2mÞ
b � ð2mþ iÞ
b for i � 0

we obtain

P3 � amð2mÞ
2b
X1
i¼0

ai

and since 0 < a < 1, then P3 ¼ O(m)2b). Finally, since am ¼ O(m)2b) and by taking into
account the orders of P1, P2, P3 in (A.6) the Lemma 3(c) follows. (d) Let

Am ¼
X1
i¼0

w2
i qe2ðm
 iÞ:

Then

Am � qe2ðmÞ þ
X1
i¼1

i
2bqe2ðm
 iÞ:

Thus,

Am � qe2ðmÞ þ
Xm
1

i¼1

i
2bqe2ðm
 iÞ þ m
2bqe2ð0Þ þ
X1
i¼mþ1

i
2bqe2ðm
 iÞ:

Now, by taking into account the expression (13) with m ‡ 1

Am � m
k þ m
2b þ
Xm
1

i¼1

i
2bðm
 iÞ
k þ
X1
i¼mþ1

i
2bði
 mÞ
k: ðA.7Þ
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Let

S ¼
Xm
1

i¼1

i
2bðm
 iÞ
k and T ¼
X1
i¼mþ1

i
2bði
 mÞ
k:

Since 1
m � i

m for i ‡ 1 and by Polya and Szegö (1972, p. 52–3) we have

S � m2
k
2b
Xm
1

i¼1

i
m

� �1
2b

1
 i
m

� �
k
1

m

� �
� m2
k
2b

Z 1

0

x1
2bð1
 xÞ
kdx:

This expression is equal to m2)k)2bBeta(2 ) 2b, 1 ) k) if k < 1 and b < 1. Thus

S ¼ Oðm2
k
2bÞ if k þ 2b > 2; k < 1 and b < 1:

On the other hand,

T ¼ m1
k
2b
X1
i¼mþ1

i
m

� �
2b i
m

 1

� �
k
1

m

� �
:

Now, from Polya and Szegö (1972, p. 52–3) and with the change of variable y ¼ x)1 we
obtain

T � m1
k
2b
Z1
1

x
2bðx
 1Þ
kdx ¼ m1
k
2b
Z1
0

ykþ2b
2ð1
 yÞ
kdy

¼ m1
k
2bBetaðk þ 2b 
 1; 1
 kÞ

if k < 1 and k + 2b > 1. Thus T ¼ O(m1)k)2b) if k < 1 and k + 2b > 1. Then, by
considering the orders of S and T in (A.7) we conclude that Am ¼ O(m2)k)2b) for k < 1,
b < 1 and k + 2b > 2. QED

Lemma 4. Let wi � vi with |v| < 1 and qe2 satisfies (13), then

Am ¼
X1
i¼0

w2
i qe2ðm
 iÞ ¼ Oðm
kÞ for m � 1:

Proof. Since

Am � qe2ðmÞ þ
Xm
1

i¼1

v2iqe2ðm
 iÞ þ v2mqe2ð0Þ þ
X1
i¼mþ1

v2iqe2ðm
 iÞ;

we have

Am � m
k þ v2m þ
Xm
1

i¼1

v2iðm
 iÞ
k þ v2m
X1
i¼1

v2ii
k: ðA.8Þ

Let

P1 ¼
Xm
1

i¼1

v2iðm
 iÞ
k and P2 ¼ v2m
X1
i¼1

v2ii
k:
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By applying Lemma 2 with a ¼ v2 we obtain P1 ¼ O(m)k). Now, since i)k £ 1 for i ‡ 1
we have

P2 � v2m
X1
i¼1

v2i and P2 ¼ Oðv2mÞ:

Thus, by taking into account the orders of P1 and P2 in (A.8) we conclude that
Am ¼ O(m)k). QED

Lemma 5. D(n) and q2
y (n) have the same asymptotic order as n fi 1.

Proof. Given that q(x) £ 1, then from (7) we have

DðnÞ �
X1
i¼0

X1
j¼0

wiwjwiþnwjþnqe2ði
 jÞ �
X1
i¼0

wiwiþn

 !2

:

Besides, from (5) qyðnÞ �
P1

i¼0 wiwiþn, hence the result follows. QED

Proof of Theorem 2. (a) Straightforward. (b) From (10) q2
yðnÞ ¼ Ofq2

yðnÞg þ OfaðnÞg.
Now, from Lemma 3(a)

qy �
X1
i¼0

wiwiþn ¼ Oðn1
2bÞ:

Furthermore, from Lemma 3(b)

aðnÞ �
X1
i¼0

w2
i w

2
iþn ¼ Oðn
2bÞ

then the result follows. QED

Proof of Theorem 3. (a) It is straightforward to prove that qy(n) ¼ O(vn) and

a(n) ¼ O(v2n). Besides, from Lemma 5, D(n) ¼ O(v2n). On the other hand,

sðnÞ �
X1
i¼0

X1
j¼0

w2
i w

2
jqe2ðnþ j
 iÞ ¼

X1
j¼0

w2
j AðnþjÞ with AðnþjÞ ¼

X1
i¼0

w2
i qe2ðnþ j
 iÞ:

Let m ¼ n + j, then

Am �
X1
i¼0

v2iajm
ij ¼ S þ T where S ¼
Xm
1

i¼0

v2iam
i

and

T ¼
X1
i¼m

v2iai
m:

But, since |v2a| < 1 then T ¼ v2m
P1

i¼0ðv2aÞ
i ¼ Oðv2mÞ. Now, in order to find the order

of S we consider two cases. If v2 > a, then
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S
v2m

¼
Xm
i¼1

a
v2

� �i
¼ v2

v2 
 a
1
 a

v2

� �mþ1
� �

� c;

where c is a finite constant. Thus S ¼ O(v2m) in this case. If v2 < a, then

S
am

¼
Xm
1

i¼0

v2

a

� �i

¼ a
a
 v2

1
 v2

a

� �m� �
� c;

where c is a finite constant. Thus, in this case S ¼ O(am). Therefore, S is O([max{v2, a}]m)
and since T ¼ O(v2m) we conclude that Am ¼ O([max{v2, a}]m). Thus

sðnÞ �
X1
j¼0

v2j½maxfv2; ag�nþj:

Now, if v2 > a,

sðnÞ � v2n
X1
j¼0

v4j ¼ Oðv2nÞ

and if v2 < a,

sðnÞ � an
X1
j¼0

ðv2aÞj ¼ OðanÞ

because |v2a| < 1. Then s(n) ¼ O([max{v2, a}]n) as required. (b) From Lemma 3(a) we
have

qyðnÞ �
X1
i¼0

wiwiþn ¼ Oðn1
2bÞ:

By Lemma 3(b),

aðnÞ �
X1
i¼0

w2
i w

2
iþn ¼ Oðn
2bÞ

and from Lemma 5,

DðnÞ ¼ Oðn2
4bÞ:

On the other hand,

sðnÞ �
X1
i¼0

X1
j¼0

w2
i w

2
jqe2ðnþ j
 iÞ �

X1
j¼0

w2
j AðnþjÞ with AðnþjÞ ¼

X1
i¼0

w2
i qe2ðnþ j
 iÞ:

Furthermore, from Lemma 3(c) with m ¼ n + j we conclude A(n+j) ¼ O{(n + j))2b}.

Then an application of Lemma 1 with d ¼ 2b in (A.1) yields

sðnÞ � n
2b þ
X1
j¼1

½jðnþ jÞ�
2b ¼ Oðn
2bÞ:

Thus, the result follows. QED

Proof of Theorem 4. (a) Similarly to the proof of Theorem 3(a), it can be shown that

qy(n) ¼ O(vn) and a(n) ¼ O(v2n). Besides, fromLemma 5,D(n) ¼ O(v2n). On the other hand,
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sðnÞ �
X1
i¼0

X1
j¼0

w2
i w

2
jqe2ðnþ j
 iÞ ¼

X1
j¼0

w2
j AðnþjÞ with AðnþjÞ ¼

X1
i¼0

w2
i qe2ðnþ j
 iÞ:

But, from Lemma 4 A(n+j) ¼ O{(n + j))k}, then

sðnÞ �
X1
j¼0

v2jðnþ jÞ
k ¼ S þ T

where

S ¼
Xn
j¼0

v2jðnþ jÞ
k and T ¼ v2n
X1
j¼1

v2jð2nþ jÞ
k:

Now, since ð1 þ j
nÞ


k � 1 for j ‡ 1, n ‡ 1, then S � n
kPn
j¼0 v

2j and therefore S ¼ O(n)k).
Given that (2n + j))k £ 1 for j ‡ 1, n ‡ 1 we have T � v2n

P1
j¼1 v

2j and then T ¼ O(v2n).
Consequently, s(n) ¼ O(n)k) as required. (b) From Lemmas 3(a), (b) and 5 we obtain

qy(n) ¼ O(n1)2b), a(n) ¼ O(n)2b) and D(n) ¼ O(n2)4b), respectively. Besides,

sðnÞ �
X1
i¼0

X1
j¼0

w2
i w

2
jqe2 ðnþ j
 iÞ �

X1
j¼0

w2
j AðnþjÞ

with

AðnþjÞ ¼
X1
i¼0

w2
i qe2ðnþ j
 iÞ:

From Lemma 3(d) with m ¼ n + j we have A(n+j) ¼ O{(n + j)2)k)2b} if k + 2b > 2,
k < 1 and b < 1. Then

sðnÞ �
X1
j¼0

w2
j ðnþ jÞ2
k
2b � n2
k
2b þ

X1
j¼1

j
2bðnþ jÞ2
k
2b � n2
k
2b 1þ
X1
j¼1

j
2b

" #

because ð1 þ j
nÞ

2
k
2b � 1. Since 2b > 1,
P1

j¼1 j

2b is a finite constant and therefore

s(n) ¼ O(n2)k)2b) for k + 2b > 2, k < 1 and b < 1. Consequently, Theorem 4(b)
follows. QED
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