Seminario de Pregrado en Matemáticas

El obetivo de este seminario es recuperar la instancia en que los alumnos de pregrado podían reunirse como comunidad para discutir y aprender sobre matemática fuera del contexto de un curso. Esto organizado por alumnos de pregrado con expositores y oyentes de pregrado. Es decir queremos fomentar la participación en este tipo de actividades enfocandonos directamente en el pregrado.

2017-07-14
17:00hrs.
Néstor Jofré. PUC
Análisis numérico del método del punto fijo en R sobre la solución de la ecuación de Colebrook-White
Sala 2
Abstract:
La necesidad de metodos numéricos para hallar una aproximación a soluciones que no pueden ser obtenidas de forma analítica es cada vez mayor. La ecuación de Colebrook-White representa un esfuerzo de modelamiento que relaciona determinadas ciertas asociadas al flujo de un fluído que transita por zonas tubulares con un coeficiente de roce $$\lambda$$, el cual será el parámetro a resolver.

Se buscará garantizar la existencia y unicidad teórica (local y global) de la solución mediante herramientas de analisis matemático en un entorno factible consistente, dentro de las cuales se encuentra el teorema del punto fijo de Brouwer en $$\mathbb{R}$$. Ademas, bajo determinadas condiciones, se hará uso el método iterativo del punto fijo para hallar una aproximacion a la solución, desde distintos puntos iniciales para mostrar la efectividad y convergencia del mismo respecto de dicha solución.
2017-07-06
15:30hrs.
Nicolás Vilches. PUC
Vallas, vías de tren y construcción de los reales.
SAM
Abstract:
Buscaremos conversar brevemente las construcciones estándar de los números reales y presentar una menos conocida, en la que se ve a los reales como funciones casi lineales. Mostraremos por qué de hecho las operaciones con las que dotamos a este conjunto de funciones surgen de manera natural, y comentaremos a grandes rasgos la demostración de que éstas convierten al conjunto en un cuerpo isomorfo a los reales.
2017-06-30
17:15hrs.
Fernando Figueroa. PUC
Demostraciones no constructivas de existencia
SAM
Abstract:
Estamos bastante acostumbrados a que para demostrar la existencia de un elemento con cierta propiedad, simplemente encontremos un ejemplo. Vamos a ver situaciones en que resulta bastante más sencillo demostrar la existencia que encontrar un ejemplo.
2017-06-27
15:30hrs.hrs.
Oscar Chacón. PUC
La curva trisectriz de distancia
Sala 2, Facultad de Matemáticas
Abstract:
En este seminario realizaremos una construcción geométrica con resultados profundos. Dados dos puntos p y q en el plano, los separaremos por dos curvas C1 y C2 tales que cada punto de C1 esté a la misma distancia de p y C2, y cada punto de C2 esté a la misma distancia de C1 y q. Mostraremos, usando geometría elemental, que tales curvas C1 y C2 existen y son únicas. Además, si p=(0,1) y q=(0,-1), entonces C1 es la gráfica de una función f: R -> R, C2es la gráfica de -f, y f es convexa.
2017-06-16
17:00hrs.
Sebastián Pavez. PUC
Conjuntos de Vitali
Sala 2
Abstract:
Vamos a discutir como definir la noción de tamaño de un conjunto en la recta real. Con esto construiremos un conjunto al cual no le podemos asignar una noción de tamaño intuitiva. Discutiremos porque este tipo de conjuntos existe y falla esta definición de tamaño.