Seminario FisMat

El objetivo de este seminario es de reunir, de la manera la mas amplia posible, investigadores y estudiantes de la comunidad chilena e internacional alrededor de las diversas temáticas de física matemática. Profesores, investigadores jóvenes, así como estudiantes, son los bienvenidos como expositores.

Los miércoles, a las 15:45 hrs, sala 5 de la Facultad de Matemáticas.

Organización: Olivier Bourget, Giuseppe De Nittis, Christian Sadel, Edgardo Stockmeyer, Rafael Tiedra de Aldecoa.
2021-03-31
15:45 hrs.
Walter Alberto de Siqueira Pedra. Universidade de São Paulo
tba
zoom
Abstract:
tba
2020-12-02
15:45 hrs.
Rafael Benguria. Pontificia Universidad Católica de Chile
Estimaciones óptimas del primer autovalor del operador de Dirac en dominios suaves en dos dimensiones en términos de la geometría del dominio
https://zoom.us/j/93451228774?pwd=eUwxQzN0S1pHYXZFL0diZ1QyZWZKdz09
Abstract:
En esta charla presentaré nuevos resultados sobre la estimación del primer autovalor del operador de Dirac en dominios suaves en dos dimensiones, en términos de la geometría del dominio. Las condiciones de borde que consideramos son las llamadas "condiciones de borde masa infinita". Las estimaciones por arriba son óptimas y las por abajo casi óptimas. Este problema surge del estudio de los "puntos cuánticos". Esta charla está basada en trabajo conjunto con P. Antunes (Lisboa), V. Lotoreichik (Praga) y T. Ourmieres-Bonafos (Marsella).
2020-11-25
12:00 hrs.
Hermann Schulz-Baldes. University of Erlangen-Nuremberg
Flat bands of surface states via index theory of Toeplitz operators with Besov symbols
https://zoom.us/j/91999243096?pwd=dW5iQjVFMTh4RlR4N09OY2FNQS9Zdz09
Abstract:
The scope of the index-theoretic approach to the bulk-boundary correspondence is extended to a pseudo-gap regime. For the case of a half-space graphene model with an edge of arbitrary cutting angle, this allows to express the density of surface as a linear combination of the winding numbers of the bulk. The new technical element is an index theorem for Toeplitz operators with non-commutative symbols from a  Besov space for operators in a finite von Neumann algebra equipped with an R-action. For such operators a type II1 analogue of Peller's traceclass characterization for Toeplitz operators is proved. This is joint work with Tom Stoiber.
2020-10-28
15:45 hrs.
Marouane Assal. Pontificia Universidad Católica de Chile
Bohr-Sommerfeld quantization conditions and eigenvalue splitting for a system of coupled Schrödinger operators in the semiclassical limit
https://zoom.us/j/94064012826?pwd=Tk1QTlBUUnpBQWRWVmtCbC9FKy9lZz09
Abstract:
I will present recent results in collaboration with Setsuro Fujiié (Ritsumeikan University, Kyoto) on the distribution of eigenvalues of a one-dimensional system of coupled Schrödinger operators in the semiclassical limit. We are interested in a model where the diagonal elements of the system are Schrödinger operators on the real line with real potentials each of them admits a simple well, and the anti-diagonal elements are first order differential operators which play the role of the interaction. Such systems arise as important models in the Born-Oppenheimer approximation of molecular dynamics. We provide Bohr-Sommerfeld quantization conditions for the eigenvalues of the system in both cases where the characteristic sets admit a tangential and transversal crossings in the phase space and give precise estimates on the location of the spectrum in the semiclassical limit. In particular, in the case of symmetric wells, the eigenvalue splitting occurs and we prove that the splitting is of polynomial order, of order $h^{4/3}$ in the tangential case and of order $h^{3/2}$ in the transversal case. If I have time I will also discuss some recent results on quantum resonances for similar systems.
2020-10-21
15:45 hrs.
Vicente Lenz. Pontificia Universidad Católica de Chile
Spectral Theory for the Thermal Hamiltonian
https://zoom.us/j/95875051216?pwd=eTFMUXNiVGRlaW1zWVRLb3VsWlhSZz09
Abstract:
We will study the operator Hr, called the Thermal Hamiltonian, originally pro­posed by Luttinger to study the effects of a thermal gradient in the matter. We will start by rigurously defining the initially formally self-adjoint operator Hr, as well as sorne unitarily equivalent operators. Then we will study their spectral prop­erties, and compute their unperturbed time evolution, as their Green functions and resolvent family. We will conclude that section by presenting a convolution poten­tials family for which the scattering conditions are satisfied. Finally we will study the dynamics defined by the classical case.
2020-10-14
15:45 hrs.
Rafael Tiedra de Aldecoa. Pontificia Universidad Católica de Chile
Stationary scattering theory for unitary operators with an application to quantum walks
Zoom Meeting ID: 99457773595, Password: FisMat
Abstract:

We present a general account on the stationary scattering theory for unitary operators in a two-Hilbert spaces setting. For unitary operators $U_0,U$ in Hilbert spaces ${\mathcal H}_0,{\mathcal H}$ and an identification operator $J:{\mathcal H}_0\to{\mathcal H}$, we give the definitions and collect properties of the stationary wave operators, the strong wave operators, the scattering operator and the scattering matrix for the triple $(U,U_0,J)$. In particular, we exhibit conditions under which the stationary wave operators and the strong wave operators exist and coincide, and we derive representation formulas for the stationary wave operators and the scattering matrix. As an application, we show that these representation formulas are satisfied for a class of anisotropic quantum walks recently introduced in the literature.


https://zoom.us/j/99457773595?pwd=VXdKWEM0OUE2VkY2YWZySkRMWkxOUT09
2020-09-30
15:45 hrs.
Rafael Tiedra de Aldecoa. Pontificia Universidad Católica de Chile
Mourre theory for unitary operators in two Hilbert spaces and quantum walks on trees
https://zoom.us/j/93311125756?pwd=Tk96UlNwNDJCaElIZVNCTWc2azQ0UT09
2020-05-20
15:45 hrs.
Asaf Levi Franco Arellano. Unam
Operadores de Sturm-Liouville Con Interacciones Puntuales
online seminar with zoom
Abstract:
En esta charla estudiaré la invarianza de los valores propios de operadores de Sturm-Liouville autoadjuntos con interacciones puntuales. En un ambiente probabilístico, dada una familia $H_\omega$ de esta clase de operadores mostraré que un punto es valor propio para toda $\omega$ o solo para un conjunto de $\omega$'s de medida cero.
2020-01-22
15:45 hrs.
Francesco Chiacchio. Universidad de Nápoles
Some isoperimetric problems in the Euclidean space with density
Sala 5, Facultad de Matemáticas
Abstract:
We will discuss the isoperimetric problem for factorized measures obtained as perturbations of the Gaussian and the anti-Gaussian, respectively. Among other things, we will show that some isoperimetric problems, for which balls centered at the origin are stable, have no solutions.Time permitting, some applications, like, for instance, Faber-Krahn type inequalities will be presented too. (Joint works with F. Brock and A. Mercaldo)
2019-12-04
15:45 hrs.
Diego Garcia. Pontificia Universidad Católica de Chile
Nematic Bulk Superconductivity In Presence Of An Electric Field
Sala 5
Abstract:
In this talk I will show the theoretical framework for the obtention of a nematic inhomogeneous superfluid model, in presence of an electric field, by using the Ginzburg Landau theory. In this context, I will conclude that the irrotational part of the superfluid current and the electric field influences the possibility of a Fréedericksz transition for the molecular alignment. Furthermore, under several assumptions, this transition is determined by a non trivial solution for the nematic phase of the system. Finally, I will suggest a set of mathematical open questions that could contribute to understand this problem. This is a joint work with Juan Pablo Borgna (Universidad de San Martin, Argentina) and Mariano De Leo (Universidad de General Sarmiento, Argentina).
2019-10-09
15:45 hrs.
Marcone Corrêa Pereira. Universidad de Sao Paulo
A nonlocal approach to spatial spread in thin structures
Sala 5
Abstract:
In this talk we discuss an approach to considerer spatial spread in $N$-dimensional thin structures.  We introduce equations with nonlocal dispersal and defined in tight domains contrasting it with its corresponding local diffusion equation with Neumann and Dirichlet boundary conditions. Here the thin structure effect is modeled by an $\epsilon$-parameter family of open sets which squeezes to a lower dimension open set as $\epsilon \to 0$. The asymptotic behavior of the solutions is analyzed and the results are compared with classical situations to elliptic equations in thin domains.
2019-09-11
15:45 hrs.
Juan Felipe Lopez Restrepo. Universidad de los Andes, Colombia
Edge States and Selfadjoint Extensions in the Kitaev Chain
Sala 5
Abstract:
In this seminar, finite discrete Kitaev chain shall be presented with its topological phase transition. A continuum limit model is derived and the diagonalization problem of the resulting bilinear hamiltonian is translated in choice of selfad-joint extensions for a one dimensional Dirac operator, which is given by a set of possible boundary conditions. It is shown that the previous result coincides with the application of the Araki’s self dual formalism and its connection with edge sates is discussed. Joint work with A. F. Reyes.
2019-09-04
15:45 hrs.
Rafael Tiedra de Aldecoa. Pontificia Universidad Católica de Chile
Ruled Strips With Asymptotically Diverging Twisting
Sala 5
Abstract:
We consider the Dirichlet Laplacian in a 2-dimensional strip composed of segments translated along a straight line with respect to a rotation angle with velocity diverging at infinity. We show that this model exhibits a “raise of dimension” at infinity leading to an essential spectrum determined by an asymptotic 3-dimensional tube of annular cross section. If the cross section of the asymptotic tube is a disc, we also prove the existence of discrete eigenvalues below the essential spectrum. Joint work with David Krejcirik (Prague). https://doi.org/10.1007/s00023-018-0684-4
2019-08-28
15:45 hrs.
Daniel J. Pons. Universidad Andrés Bello
Métricas no-canónicas en Diff(S1)
Sala 5
Abstract:
Re-visitamos ideas de V. I. Arnold sobre grupos de difeomorfismos de variedades. Cuando la variedad subyacente es el círculo, estudiamos la geometría de tal grupo dotado con algunas métricas.
2019-08-21
15:45 hrs.
Marouane Assal. Pontificia Universidad Católica de Chile
A double well problem for a system of Schrödinger operators with energy-level crossing
Sala 5
Abstract:
We study the existence and the asymptotic distribution of the eigenvalues of a 2*2 semiclassical system of coupled Schrödinger operators, in the case where the two electronic levels (potentials) cross at some real point and each of them admits a simple well. Considering energy levels above that of the crossing, we give the asymptotics of the eigenvalues close to such energies. In the case of symmetric wells, eigenvalues splitting occurs and we give a precise estimate of it.

This is a joint work with Setsuro Fujiie (Ritsumeikan University, Kyoto, Japan).
2019-08-14
15:45 hrs.
Julien Royer. Universidad de Toulouse
Local energy decay for the periodic damped wave equation
Sala 5
Abstract:
In this talk, we will discuss the local (or global) energy decay for the wave equation with damping at infinity. We are in particular interested in the case of a periodic (or asymptotically periodic) setting. We will mainly describe the contribution of low frequencies and observe that it behaves like the solution of some heat equation. We will see how this emerges from the spectral analysis of the damped wave equation.
2019-07-24
15:45 hrs.
Fabian Belmonte. Universidad Católica del Norte
Canonical Quantization of Constants of Motion
Sala 5
Abstract:
It is well known that Weyl quantization does not intertwine the Poisson bracket of two functions with the commutator of the corresponding operators (Groenewold- van Hove’s no go theorem). The latter suggest that Weyl quantization does not preserve the constants of motion of every given Hamiltonian, however, there are very important examples where it does so. In this talk we are going to approach the following problems:
a) Is it possible to determine the Hamiltonians for which a given canonical quantization preserves its constants of motion? We will give an interesting criteria partially answering this question in terms of the Wigner transform. We will give some important examples as well.
b) Conversely, is it possible to construct a canonical quantization preserving the constants of motion of a prescribed Hamiltonian? Under certain conditions, we will show a construction of such quantization based in the structural analogy between the description of classical and quantum constants of motion.
2019-06-05
15:45 hrs.
Horia Cornean. Aalborg University
A Beals criterion for magnetic pseudo-differential operators proved with magnetic Gabor frames
Sala 5
Abstract:
First, we give a new proof for the Beals commutator criterion for non-magnetic Weyl pseudo-differential operators based on classical Gabor tight frames. Second, by introducing a modified ‘magnetic’ Gabor tight frame, we naturally derive the magnetic analogue of the Beals criterion originally considered by Iftimie-Mantoiu-Purice. This is joint work with Bernard Helffer (Nantes) and Radu Purice (Bucharest). https://doi.org/10.1080/03605302.2018.1499777
2019-05-29
15:45 hrs.
Andrés Fernando Reyes Lega. Universidad de los Andes (Colombia)
Emergent gauge symmetries, quantum operations and anomalies
Sala 5
Abstract:
The Gelfand-Naimark-Segal (GNS) construction is a fundamental tool for the study of the representation theory of operator algebras. It also plays a prominent role in the algebraic approach to quantum field theory. In this talk I will discuss some examples of applications of the algebraic approach to quantum physics to systems with a finite number of degrees of freedom. I will illustrate how the GNS construction naturally leads to interesting connections between gauge symmetries, anomalies and quantum-information concepts like entanglement entropy and quantum operations.
2019-05-15
15:45 hrs.
Massimo Moscolari. Sapienza University of Rome
Beyond Diophantine Wannier diagrams: gap labelling for Bloch-Landau Hamiltonians
Sala 5
Abstract:
In 1978 Wannier discovered a Diophantine relation expressing the integrated density of states of a gapped group of bands of the Hofstadter Hamiltonian as a linear function of the magnetic field flux with integer slope. I will show how to extend this relation to a gap labelling theorem for any 2D Bloch-Landau Hamiltonian operator and to certain non-covariant systems having slowly varying magnetic fields. The integer slope will be interpreted as the Chern character of the projection onto the space of occupied states. The talk is based on a joint work with H. Cornean and D. Monaco.