Tobias Ried. Lmu Munich & Mpmi Leipzig
A variational approach to the regularity of optimal transportation
Sala 2, edificio Rolando Chuaqui
Abstract:
In this talk I want to present a purely variational approach to the regularity theory for the Monge-Ampère equation, or rather optimal transportation, introduced by Goldman—Otto. Following De Giorgi’s strategy for the regularity theory of minimal surfaces, it is based on the approximation of the displacement by a harmonic gradient, which leads to a one-step improvement lemma, and feeds into a Campanato iteration on the C^{1,\alpha}-level for the displacement. We extend the result of Goldman—Otto for the Euclidean cost function to the case of general cost functions. One of the new contributions is the use of almost-minimality: if the cost is quantitatively close to the Euclidean cost function, a minimiser for the optimal transport problem with general cost is an almost-minimiser for the one with quadratic cost. This allows us to reprove the C^{1,\alpha}-regularity result of De Philippis—Figalli, bypassing Caffarelli’s celebrated theory. (This is joint work with F. Otto and M. Prod’homme)